Small extracellular vesicles (sEVs) have been increasingly recognized as circulating biomarkers and prognosticators for disease diagnosis. However, the clinical applications of sEVs are seriously limited by the lack of a robust and easy scale-up isolation technique. Herein, the feasibility of a polyphenol-metal three-dimensional (3D) network for label-free sEV isolation was explored. As a proof-of-concept, with tannic acid (TA) as the polyphenolic ligand and Fe(III) as the coordinated metal, the TA-Fe(III) 3D network coating mesoporous silica beads (SiO@BSA@Fe-TA) was designed and fabricated via a coordination-driven layer-by-layer self-assembly approach. The successful fabrication of SiO@BSA@Fe-TA was validated by Fourier transform infrared spectroscopy, scanning electron microscopy, X-ray photoelectron spectroscopy, and thermogravimetric analysis. With the low-cost TA (as low as US$ 0.18/g) as the probe, SiO@BSA@Fe-TA achieved universal capture toward sEVs in different cells and plasma samples. The capture efficiency reached 85.4 ± 1.5%, which is comparable to the antibody-based capture techniques and significantly higher than the ultracentrifugation (UC) method. The purity of sEVs isolated by SiO@BSA@Fe-TA from the H1299 cell culture supernatant was measured as (1.07 ± 0.14) × 10 particles/μg, which is 3.1 times higher than that via the UC method. Another important superiority of SiO@BSA@Fe-TA is the facile self-assembly approach, which can harvest a yield of up to grams, allowing simultaneous processing of more than 500 plasma samples. The SiO@BSA@Fe-TA-based strategy was further successfully employed to distinguish nonsmall cell lung cancer (NSCLC) and small cell lung cancer (SCLC) with an accuracy of 87.1%. The developed SiO@BSA@Fe-TA is a label-free, universal, low cost, and easy scale-up technique for sEV-based liquid biopsy in lung cancer diagnosis and typing.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.analchem.2c03283 | DOI Listing |
Sci Rep
December 2024
Department of Chemistry and Biochemistry, Northern Arizona University, Flagstaff, AZ, USA.
Idiopathic pulmonary fibrosis (IPF) is a fatal disease defined by a progressive decline in lung function due to scarring and accumulation of extracellular matrix (ECM) proteins. The SOCS (Suppressor Of Cytokine Signaling) domain is a 40 amino acid conserved domain known to form a functional ubiquitin ligase complex targeting the Von Hippel Lindau (VHL) protein for proteasomal degradation. Here we show that the SOCS conserved domain operates as a molecular tool, to disrupt collagen and fibronectin fibrils in the ECM associated with fibrotic lung myofibroblasts.
View Article and Find Full Text PDFSci Rep
December 2024
Department of Biochemistry and Molecular Biology, Medical University of Lublin, 20-093, Lublin, Poland.
Using Fourier Transform Infrared spectroscopy (FTIR), it is possible to show chemical composition of materials and / or profile chemical changes occurring in tissues, cells, and body fluids during onset and progression of diseases. For diagnostic application, the use of blood would be the most appropriate in biospectroscopy studies since, (i) it is easily accessible and, (ii) enables frequent analyses of biochemical changes occurring in pathological states. At present, different studies have investigated potential of serum, plasma and sputum being alternative biofluids for lung cancer detection using FTIR.
View Article and Find Full Text PDFSci Rep
December 2024
Department of Pathology, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan.
Micropapillary adenocarcinoma (MPC) is an aggressive histological subtype of lung adenocarcinoma (LUAD). MPC is composed of small clusters of cancer cells exhibiting inverted polarity. However, the mechanism underlying its formation is poorly understood.
View Article and Find Full Text PDFNat Commun
December 2024
Department of Electrical Engineering, Stanford University, Stanford, CA, USA.
Evaluating the effectiveness of cancer treatments in relation to specific tumor mutations is essential for improving patient outcomes and advancing the field of precision medicine. Here we represent a comprehensive analysis of 78,287 U.S.
View Article and Find Full Text PDFNat Commun
December 2024
Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL, USA.
The mechanism(s) underlying gut microbial metabolite (GMM) contribution towards alcohol-mediated cardiovascular disease (CVD) is unknown. Herein we observe elevation in circulating phenylacetylglutamine (PAGln), a known CVD-associated GMM, in individuals living with alcohol use disorder. In a male murine binge-on-chronic alcohol model, we confirm gut microbial reorganization, elevation in PAGln levels, and the presence of cardiovascular pathophysiology.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!