Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
We propose a scheme to entangle Silicon-Vacancy (SiV) centers embedded in a diamond acoustic waveguide. These SiV centers interact with acoustic modes of the waveguide via strain-induced coupling. Through Morris-Shore transformation, the Hilbert space of this hybrid quantum system can be factorized into a closed subspace in which we can deterministically realize the symmetrical Dicke states between distant SiV centers with high fidelity. In addition, the generation of entangled Dicke states can be controlled by manipulating the strength and frequency of the driving field applied on SiV centers. This protocol provides a promising way to prepare multipartite entanglement in spin-phonon hybrid systems and could have broad applications for future quantum technologies.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/OE.468293 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!