The high saturation current density and ultrafast heating modulation of graphene makes it a competitive candidate for future thermal emission source. However, the low emissivity and easy oxidation under high temperature in air limit graphene application in the spectral range from the visible to near infrared. Here, we report a visible graphene thermal emitter based on the metal Fabry-Pérot (FP) cavity, which can greatly enhance the emissivity of graphene at wavelength around 637 nm and protect graphene from oxidation. We investigate the temperature characteristics of the emitter, and find the temperature of hot electrons in graphene is much higher than that of graphene lattice. Moreover, we also demonstrate the wavelength and intensity of graphene emission could be controlled by tuning the dielectric thickness between two gold layers. These results are helpful in the development of advanced graphene electro-thermal emission controlling application.

Download full-text PDF

Source
http://dx.doi.org/10.1364/OE.474008DOI Listing

Publication Analysis

Top Keywords

graphene
9
metal fabry-pérot
8
fabry-pérot cavity
8
visible light
4
emission
4
light emission
4
emission enhancement
4
enhancement graphene-based
4
graphene-based metal
4
cavity high
4

Similar Publications

Optimizing CNC turning of AISI D3 tool steel using Al₂O₃/graphene nanofluid and machine learning algorithms.

Heliyon

December 2024

School of Mechanical Engineering, Institute of Technology, Wallaga University, P.O. Box 395, Nekemte, Ethiopia.

Turning AISI (American Iron and Steel Institute) D3 tool steel can be challenging due to a lack of optimal process parameters and proper coolant application to achieve high surface quality and temperature control. Machine learning helps in predicting the optimal parameters, whereas nanofluids enhance cooling efficiency while preserving both the tool and the workpiece. This work intends to utilize advanced machine learning approaches to optimize process parameters with the application of hybrid nanofluids (AlO/graphene) during the CNC turning of AISI D3.

View Article and Find Full Text PDF

Effect of Graphene-Based Coating 3D Printing Process on the Remanence and Corrosion of Sintered NdFeB Magnets.

3D Print Addit Manuf

December 2024

Materials Science and Technology Center (CCTM), Nuclear, and Energy Research Institute (IPEN), University of São Paulo (USP), São Paulo, São Paulo, Brazil.

This study describes a 3D fused deposition modeling (FDM) printing process using a graphene-impregnated polylactic acid (G-PLA) filament to create a new type of rigid, plastic, nonconductive, and anticorrosion layer. Therefore, the possibility of 3D printing a plastic layer using FDM methods is demonstrated herein. A commercial magnet such as N35 NdFeB can be used to produce an efficient shielding film by additive manufacturing.

View Article and Find Full Text PDF

Bioprinting has emerged as a powerful manufacturing platform for tissue engineering, enabling the fabrication of 3D living structures by assembling living cells, biological molecules, and biomaterials into these structures. Among various biomaterials, hydrogels have been increasingly used in developing bioinks suitable for 3D bioprinting for diverse human body tissues and organs. In particular, hydrogel blends combining gelatin and gelatin methacryloyl (GelMA; "GG hydrogels") receive significant attention for 3D bioprinting owing to their many advantages, such as excellent biocompatibility, biodegradability, intrinsic bioactive groups, and polymer networks that combine the thermoresponsive gelation feature of gelatin and chemically crosslinkable attribute of GelMA.

View Article and Find Full Text PDF

Purpose: Biofilms are one of the main threats related to bacteria. Owing to their complex structure, in which bacteria are embedded in the extracellular matrix, they are extremely challenging to eradicate, especially since they can inhabit both biotic and abiotic surfaces. This study aimed to create an effective antibiofilm nanofilm based on graphene oxide-metal nanoparticles (GOM-NPs).

View Article and Find Full Text PDF

A new type of two-dimensional carbon-based monolayers namely irida-graphene as an anode material for magnesium-ion batteries.

J Mol Graph Model

December 2024

Department of computer Engineering, College of Computer Science, King Khalid University, Main Campus, Al farah Abha, 61421, Kingdom of Saudi Arabia.

The DFT was employed to assess the ion-storage capability of an irida-graphene monolayer (IGM) in Mg-ion batteries (MIBs). The IGM had a mechanically stable structure. The IGM also exhibited great conductance based on the DOS calculations.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!