Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Protein phosphorylation is a post-translational modification that enables various cellular activities and plays essential roles in protein interactions. Phosphorylation is an important process for the replication of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). To shed more light on the effects of phosphorylation, we used an ensemble of neural networks to predict potential kinases that might phosphorylate SARS-CoV-2 nonstructural proteins (nsps) and molecular dynamics (MD) simulations to investigate the effects of phosphorylation on nsps structure, which could be a potential inhibitory target to attenuate viral replication. Eight target candidate sites were found as top-ranked phosphorylation sites of SARS-CoV-2. During the process of molecular dynamics (MD) simulation, the root-mean-square deviation (RMSD) analysis was used to measure conformational changes in each nsps. Root-mean-square fluctuation (RMSF) was employed to measure the fluctuation in each residue of 36 systems considered, allowing us to evaluate the most flexible regions. These analysis shows that there are significant structural deviations in the residues namely nsp1 THR 72, nsp2 THR 73, nsp3 SER 64, nsp4 SER 81, nsp4 SER 455, nsp5 SER284, nsp6 THR 238, and nsp16 SER 132. The identified list of residues suggests how phosphorylation affects SARS-CoV-2 nsps function and stability. This research also suggests that kinase inhibitors could be a possible component for evaluating drug binding studies, which are crucial in therapeutic discovery research.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9693435 | PMC |
http://dx.doi.org/10.3390/v14112436 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!