Analysing complex datasets while maintaining the interpretability and explainability of outcomes for clinicians and patients is challenging, not only in viral infections. These datasets often include a variety of heterogeneous clinical, demographic, laboratory, and personal data, and it is not a single factor but a combination of multiple factors that contribute to patient characterisation and host response. Therefore, multivariate approaches are needed to analyse these complex patient datasets, which are impossible to analyse with univariate comparisons (e.g., one immune cell subset versus one clinical factor). Using a SARS-CoV-2 infection as an example, we employed a patient similarity network (PSN) approach to assess the relationship between host immune factors and the clinical course of infection and performed visualisation and data interpretation. A PSN analysis of ~85 immunological (cellular and humoral) and ~70 clinical factors in 250 recruited patients with coronavirus disease (COVID-19) who were sampled four to eight weeks after a PCR-confirmed SARS-CoV-2 infection identified a minimal immune signature, as well as clinical and laboratory factors strongly associated with disease severity. Our study demonstrates the benefits of implementing multivariate network approaches to identify relevant factors and visualise their relationships in a SARS-CoV-2 infection, but the model is generally applicable to any complex dataset.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9697085PMC
http://dx.doi.org/10.3390/v14112422DOI Listing

Publication Analysis

Top Keywords

sars-cov-2 infection
12
relationship host
8
host response
8
clinical factors
8
clinical
6
factors
6
network analysis
4
analysis uncovering
4
uncovering relationship
4
response clinical
4

Similar Publications

Learning the language of antibody hypervariability.

Proc Natl Acad Sci U S A

January 2025

Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA 02139.

Protein language models (PLMs) have demonstrated impressive success in modeling proteins. However, general-purpose "foundational" PLMs have limited performance in modeling antibodies due to the latter's hypervariable regions, which do not conform to the evolutionary conservation principles that such models rely on. In this study, we propose a transfer learning framework called Antibody Mutagenesis-Augmented Processing (AbMAP), which fine-tunes foundational models for antibody-sequence inputs by supervising on antibody structure and binding specificity examples.

View Article and Find Full Text PDF

Background: Due to advances in treatment, HIV is now a chronic condition with near-normal life expectancy. However, people with HIV continue to have a higher burden of mental and physical health conditions and are impacted by wider socioeconomic issues. Positive Voices is a nationally representative series of surveys of people with HIV in the United Kingdom.

View Article and Find Full Text PDF

Background: The COVID-19 pandemic has accelerated the digitalization of modern society, extending digital transformation to daily life and psychological evaluation and treatment. However, the development of competencies and literacy in handling digital technology has not kept pace, resulting in a significant disparity among individuals. Existing measurements of digital literacy were developed before widespread information and communications technology device adoption, mainly focusing on one's perceptions of their proficiency and the utility of device operation.

View Article and Find Full Text PDF

The "" under this Perspective underline the importance of interdisciplinary collaboration and partnerships across several disciplines, such as medical science and technology, medicine, bioengineering, and computational approaches, in bridging the gap between research, manufacturing, and clinical applications. Effective communication is key to bridging team gaps, enhancing trust, and resolving conflicts, thereby fostering teamwork and individual growth toward shared goals. Drawing from the success of the COVID-19 vaccine development, we advocate the application of similar collaborative models in other complex health areas such as nanomedicine and biomedical engineering.

View Article and Find Full Text PDF

The process of regional economic development is marked by a sustained exposure to external disturbances. In today's unpredictable and tumultuous global environment, such disturbances have become increasingly common, underlining the need to advance a region's economic resilience and foster adaptive mechanisms to handle environmental flux. Comparing the typical provinces in eastern, central, western and northeastern regions during the COVID-19 epidemic period, it found that the economic resilience performance of Henan Province, which is a representative of the central region, has the following characteristics.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!