Serum Metabolic Correlates of the Antibody Response in Subjects Receiving the Inactivated COVID-19 Vaccine.

Vaccines (Basel)

Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, Huashan Hospital, Fudan University, Shanghai 200040, China.

Published: November 2022

Background: Metabolites are involved in biological process that govern the immune response to infection and vaccination. Knowledge of how metabolites interact with the immune system during immunization with the COVID-19 vaccine is limited. Here, we report that the serum metabolites are correlated with the magnitude of the antibody response in recipients receiving the inactivated COVID-19 vaccine, which provides critical information for studying metabolism regarding the human immune response to vaccination.

Methods: 106 healthy volunteers without history of SARS-CoV-2 infection or vaccination were prospectively enrolled to receive the primary series of two doses of inactivated whole-virion SARS-CoV-2 vaccine. The serum samples were collected 2-4 weeks after the second dose. The magnitude of the anti-RBD antibody was quantified using surrogate virus neutralization tests. The profile of metabolites in serum was identified using untargeted metabolomics analysis.

Results: The level of anti-RBD antibody 14-28 days after the second dose was significantly elevated and its interpersonal variability was diverse in a wide range. Thirty-two samples at extremes of the anti-RBD antibody titer were selected to discover the metabolic correlates. Two hundred and fifteen differential metabolites associated with antibody response independent of body mass index were identified. Pregnenolone and sphingolipid metabolism might be involved in the modulation of the human antibody response to the inactivated COVID-19 vaccine.

Conclusion: We discovered key metabolites as well as those with a related functional significance that might modulate the human immune response to vaccination.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9699138PMC
http://dx.doi.org/10.3390/vaccines10111890DOI Listing

Publication Analysis

Top Keywords

antibody response
16
inactivated covid-19
12
covid-19 vaccine
12
immune response
12
anti-rbd antibody
12
metabolic correlates
8
receiving inactivated
8
infection vaccination
8
human immune
8
second dose
8

Similar Publications

Pancreatic cancer is characterized by occult onset, low early diagnosis rate, rapid progress, and poor prognosis. Due to the low response rate and low PD-L1 expression in pancreatic cancer, the therapeutic application of PL-L1 inhibitors in pancreatic cancer is greatly limited. In vitro studies showed that the expression of PD-L1 increased in pancreatic cancer cells stimulated by fluorouracil (5-FU).

View Article and Find Full Text PDF

Triple-negative breast cancer (TNBC) is infamous for its aggressive phenotype and poorer prognosis when compared to other breast cancer subtypes. One factor contributing to this poor prognosis is that TNBC lacks expression of the receptors that available hormonal or molecular-oriented therapies attack. New treatments that exploit biological targets specific to TNBC are desperately needed to improve patient outcomes.

View Article and Find Full Text PDF

The emerging of emergent SARS-CoV-2 subvariants has reduced the protective efficacy of COVID-19 vaccines. Therefore, novel COVID-19 vaccines targeting these emergent variants are needed. We designed and prepared CoV072, an mRNA-based vaccine against SARS-CoV-2 Omicron (EG.

View Article and Find Full Text PDF

Despite the availability of multiple treatment options for breast cancer, challenges such as adverse events, drug resistance, and disease progression persist for patients. The identification of human epidermal growth factor receptor 2 (HER2) as an oncogenic driver in a subset of breast cancers, alongside the development of HER2-targeted therapies, has significantly improved the prognosis of HER2-amplified breast cancers. However, therapeutic options remain limited for HER2-overexpressing or HER2-negative breast cancers.

View Article and Find Full Text PDF

Background and objective RhD variants show altered D antigen expression, affecting their serological detection. Proper identification is crucial due to potential anti-D antibody formation. This study aimed to retrospectively analyze the frequency and characteristics of D variant cases encountered during RhD typing in both blood donors and recipients and the transfusion implications.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!