A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

An Improved Spatiotemporal Data Fusion Method for Snow-Covered Mountain Areas Using Snow Index and Elevation Information. | LitMetric

AI Article Synopsis

  • High-quality remote sensing images are crucial for avalanche forecasting and weather studies in snowy regions, but capturing them accurately is challenging due to sensor limitations and atmospheric conditions.
  • The existing ESTARFM method struggles to predict abrupt changes in snow cover, which prompted the development of an improved version called iESTARFM that incorporates NDSI and DEM data for better accuracy.
  • Experimental results demonstrate that iESTARFM outperforms ESTARFM by reducing errors in spectral accuracy and improving image clarity, making it a valuable tool for generating detailed time series images in snow-covered areas like the mountains of Nepal.*

Article Abstract

Remote sensing images with high spatial and temporal resolution in snow-covered areas are important for forecasting avalanches and studying the local weather. However, it is difficult to obtain images with high spatial and temporal resolution by a single sensor due to the limitations of technology and atmospheric conditions. The enhanced spatial and temporal adaptive reflectance fusion model (ESTARFM) can fill in the time-series gap of remote sensing images, and it is widely used in spatiotemporal fusion. However, this method cannot accurately predict the change when there is a change in surface types. For example, a snow-covered surface will be revealed as the snow melts, or the surface will be covered with snow as snow falls. These sudden changes in surface type may not be predicted by this method. Thus, this study develops an improved spatiotemporal method ESTARFM (iESTARFM) for the snow-covered mountain areas in Nepal by introducing NDSI and DEM information to simulate the snow-covered change to improve the accuracy of selecting similar pixels. Firstly, the change in snow cover is simulated according to NDSI and DEM. Then, similar pixels are selected according to the change in snow cover. Finally, NDSI is added to calculate the weights to predict the pixels at the target time. Experimental results show that iESTARFM can reduce the bright abnormal patches in the land area compared to ESTARFM. For spectral accuracy, iESTARFM performs better than ESTARFM with the root mean square error (RMSE) being reduced by 0.017, the correlation coefficient (r) being increased by 0.013, and the Structural Similarity Index Measure (SSIM) being increased by 0.013. For spatial accuracy, iESTARFM can generate clearer textures, with Robert's edge (Edge) being reduced by 0.026. These results indicate that iESTARFM can obtain higher prediction results and maintain more spatial details, which can be used to generate dense time series images for snow-covered mountain areas.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9657560PMC
http://dx.doi.org/10.3390/s22218524DOI Listing

Publication Analysis

Top Keywords

snow-covered mountain
12
mountain areas
12
spatial temporal
12
improved spatiotemporal
8
fusion method
8
remote sensing
8
sensing images
8
images high
8
high spatial
8
temporal resolution
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!