The prevalence of chronic diseases and the rapid rise in the aging population are some of the major challenges in our society. The utilization of the latest and unique technologies to provide fast, accurate, and economical ways to collect and process data is inevitable. Industry 4.0 (I4.0) is a trend toward automation and data exchange. The utilization of the same concept of I4.0 in healthcare is termed Healthcare 4.0 (H4.0). Digital Twin (DT) technology is an exciting and open research field in healthcare. DT can provide better healthcare in terms of improved patient monitoring, better disease diagnosis, the detection of falls in stroke patients, and the analysis of abnormalities in breathing patterns, and it is suitable for pre- and post-surgery routines to reduce surgery complications and improve recovery. Accurate data collection is not only important in medical diagnoses and procedures but also in the creation of healthcare DT models. Health-related data acquisition by unobtrusive microwave sensing is considered a cornerstone of health informatics. This paper presents the 3D modeling and analysis of unobtrusive microwave sensors in a digital care-home model. The sensor is studied for its performance and data-collection capability with regards to patients in care-home environments.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9657877 | PMC |
http://dx.doi.org/10.3390/s22218519 | DOI Listing |
Radio detection and ranging-based (radar) sensing offers unique opportunities for biomedical monitoring and can help overcome the limitations of currently established solutions. Due to its contactless and unobtrusive measurement principle, it can facilitate the longitudinal recording of human physiology and can help to bridge the gap from laboratory to real-world assessments. However, radar sensors typically yield complex and multidimensional data that are hard to interpret without domain expertise.
View Article and Find Full Text PDFPediatr Pulmonol
July 2024
Department of Neonatology, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht, The Netherlands.
Pediatric sleep-related breathing disorders, or sleep-disordered breathing (SDB), cover a range of conditions, including obstructive sleep apnea, central sleep apnea, sleep-related hypoventilation disorders, and sleep-related hypoxemia disorder. Pediatric SDB is often underdiagnosed, potentially due to difficulties associated with performing the gold standard polysomnography in children. This scoping review aims to: (1) provide an overview of the studies reporting on safe, noncontact monitoring of respiration in young children, (2) describe the accuracy of these techniques, and (3) highlight their respective advantages and limitations.
View Article and Find Full Text PDFAnnu Int Conf IEEE Eng Med Biol Soc
July 2023
Contactless sensors embedded in the ambient environment have broad applications in unobtrusive, long-term health monitoring for preventative and personalized healthcare. Microwave radar sensors are an attractive candidate for ambient sensing due to their high sensitivity to physiological motions, ability to penetrate through obstacles and privacy-preserving properties, but practical applications in complex real-world environments have been limited because of challenges associated with background clutter and interference. In this work, we propose a thin and soft textile sensor based on microwave metamaterials that can be easily integrated into ordinary furniture for contactless ambient monitoring of multiple cardiovascular signals in a localized manner.
View Article and Find Full Text PDFSensors (Basel)
November 2022
School of Engineering, The University of Edinburgh, Edinburgh EH9 3FF, UK.
The prevalence of chronic diseases and the rapid rise in the aging population are some of the major challenges in our society. The utilization of the latest and unique technologies to provide fast, accurate, and economical ways to collect and process data is inevitable. Industry 4.
View Article and Find Full Text PDFFront Physiol
October 2022
Department of Electrical and Electronic Engineering, University of Dhaka, Dhaka, Bangladesh.
Modern microwave Doppler radar-based physiological sensing is playing an important role in healthcare applications and during the last decade, there has been a significant advancement in this non-contact respiration sensing technology. The advantages of contactless, unobtrusive respiration monitoring have drawn interest in various medical applications such as sleep apnea, sudden infant death syndromes (SIDS), remote respiratory monitoring of burn victims, and COVID patients. This paper provides a perspective on recent advances in biomedical and healthcare applications of Doppler radar that can detect the tiny movement of the chest surfaces to extract heartbeat and respiration and its associated different vital signs parameters (tidal volume, heart rate variability (HRV), and so on) of the human subject.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!