Since drunk driving poses a significant threat to road traffic safety, there is an increasing demand for the performance and dependability of online drunk driving detection devices for automobiles. However, the majority of current detection devices only contain a single sensor, resulting in a low degree of detection accuracy, erroneous judgments, and car locking. In order to solve the problem, this study firstly designed a sensor array based on the gas diffusion model and the characteristics of a car steering wheel. Secondly, the data fusion algorithm is proposed according to the data characteristics of the sensor array on the steering wheel. The support matrix is used to improve the data consistency of the single sensor data, and then the adaptive weighted fusion algorithm is used for multiple sensors. Finally, in order to verify the reliability of the system, an online intelligent detection device for drunk driving based on multi-sensor fusion was developed, and three people using different combinations of drunk driving simulation experiments were conducted. According to the test results, a drunk person in the passenger seat will not cause the system to make a drunk driving determination. When more than 50 mL of alcohol is consumed and the driver is seated in the driver's seat, the online intelligent detection of drunk driving can accurately identify drunk driving, and the car will lock itself as soon as a real-time online voice prompt is heard. This study enhances and complements theories relating to data fusion for online automobile drunk driving detection, allowing for the online identification of drivers who have been drinking and the locking of their vehicles to prevent drunk driving. It provides technical support for enhancing the accuracy of online systems that detect drunk driving in automobiles.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9653997PMC
http://dx.doi.org/10.3390/s22218460DOI Listing

Publication Analysis

Top Keywords

drunk driving
44
drunk
12
driving detection
12
driving
11
online drunk
8
based multi-sensor
8
multi-sensor fusion
8
detection devices
8
single sensor
8
sensor array
8

Similar Publications

Changes in winter precipitation accompanying emerging climate trends lead to a major carbon-climate feedback from Arctic tundra. However, the mechanisms driving the direction, magnitude, and form (CO and CH) of C fluxes and derived climate forcing (i.e.

View Article and Find Full Text PDF

Objective: This study aimed to analyze the influence of different tunnel reinforcement measures on drivers and to evaluate the associated driving safety risks.

Methods: Experimental data of driving behavior and physiological response were collected under different driving simulation scenarios, such as cover arch erection, corrugated steel, grouting, Steel strips, and fire; an evaluation index system was established based on electrocardiographic (ECG), electrodermal activity(EDA), standard deviation of speed (SDSP), Steering Entropy(SE), standard deviation of lateral position (SDLP) and other indices. The classical domain rank standard of each evaluation index was divided using K-Means algorithm, and a synthetic evaluation matter-element model was established to comprehensively evaluate and analyze the safety risks of each scenario.

View Article and Find Full Text PDF

The prevalence of oromaxillofacial fracture in pediatric patients is comparatively less than in adults, which could be due to several inconclusive factors, such as infrequent exposure to high-contact sports games, rash driving of vehicles and motorbikes, alcohol consumption, and fist fights for personal reasons under the influence of alcohol. More importantly, most of the time, children are under the care of their parents till they reach an age of maturity. One more thing that everyone believes even today is the elasticity nature of their bones as well as their body weight during their growing stage.

View Article and Find Full Text PDF

Drivers analysis and future scenario-based predictions of nutrient loads in key lakes and reservoirs of the Yangtze River Catchment.

J Environ Manage

January 2025

State Key Laboratory of Environment Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China. Electronic address:

The excessive nutrient loading in lakes and reservoirs poses significant threats to water quality and ecological health, especially under the influence of global climate change and intensified human activities. This study focuses on the long-term trends in nutrient content and ratios, as well as their driving factors in six major lakes and reservoirs (Chaohu Lake, Danjiangkou Reservoir, Dianchi Lake, Dongtinghu Lake, Poyanghu Lake, and Taihu Lake) within the Yangtze River Catchment from 2002 to 2021. Utilizing Redundancy Analysis, Random Forest and Generalized Additive Model, we identify the shifts in natural and socio-economic factors influencing nutrient concentrations and predict future trends under various scenarios.

View Article and Find Full Text PDF

Terrestrial ecosystem carbon sinks are a natural deposit that absorbs carbon from the atmosphere. A stable land carbon sink facilitates more reliable predictions of carbon sequestration under changing climate conditions. In contrast, a highly variable land carbon sink will introduce significant uncertainty into model predictions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!