Epilepsy is a severe neurological disorder that is usually diagnosed by using an electroencephalogram (EEG). However, EEG signals are complex, nonlinear, and dynamic, thus generating large amounts of data polluted by many artefacts, lowering the signal-to-noise ratio, and hampering expert interpretation. The traditional seizure-detection method of professional review of long-term EEG signals is an expensive, time-consuming, and challenging task. To reduce the complexity and cost of the task, researchers have developed several seizure-detection approaches, primarily focusing on classification systems and spectral feature extraction. While these methods can achieve high/optimal performances, the system may require retraining and following up with the feature extraction for each new patient, thus making it impractical for real-world applications. Herein, we present a straightforward manual/automated detection system based on the simple seizure feature amplification analysis to minimize these practical difficulties. Our algorithm (a simplified version is available as additional material), borrowing from the telecommunication discipline, treats the seizure as the carrier of information and tunes filters to this specific bandwidth, yielding a viable, computationally inexpensive solution. Manual tests gave 93% sensitivity and 96% specificity at a false detection rate of 0.04/h. Automated analyses showed 88% and 97% sensitivity and specificity, respectively. Moreover, our proposed method can accurately detect seizure locations within the brain. In summary, the proposed method has excellent potential, does not require training on new patient data, and can aid in the localization of seizure focus/origin.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9657642PMC
http://dx.doi.org/10.3390/s22218444DOI Listing

Publication Analysis

Top Keywords

eeg signals
8
feature extraction
8
proposed method
8
seizure
5
seizure detection
4
detection low
4
low computational
4
computational effective
4
effective approach
4
approach classification
4

Similar Publications

Objectives: The actions and decisions of pilots are directly related to aviation safety. Therefore, understanding the neurological and cognitive processes of pilots during flight is essential. This study aims to investigate the EEG signals of pilots to understand the characteristic changes during the climb and descent stages of flight.

View Article and Find Full Text PDF

A generative adversarial network (GAN) makes it possible to map a data sample from one domain to another one. It has extensively been employed in image-to-image and text-to image translation. We propose an EEG-to-EEG translation model to map the scalp-mounted EEG (scEEG) sensor signals to intracranial EEG (iEEG) sensor signals recorded by foramen ovale sensors inserted into the brain.

View Article and Find Full Text PDF

Enhancing motor disability assessment and its imagery classification is a significant concern in contemporary medical practice, necessitating reliable solutions to improve patient outcomes. One promising avenue is the use of brain-computer interfaces (BCIs), which establish a direct communication pathway between users and machines. This technology holds the potential to revolutionize human-machine interaction, especially for individuals diagnosed with motor disabilities.

View Article and Find Full Text PDF

Existing autonomous driving systems face challenges in accurately capturing drivers' cognitive states, often resulting in decisions misaligned with drivers' intentions. To address this limitation, this study introduces a pioneering human-centric spatial cognition detecting system based on drivers' electroencephalogram (EEG) signals. Unlike conventional EEG-based systems that focus on intention recognition or hazard perception, the proposed system can further extract drivers' spatial cognition across two dimensions: relative distance and relative orientation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!