The Energy Internet (EI) and Smart Grid 2.0 (SG 2.0) concepts are potential challenges in industry and research. The purpose of SG 2.0 and EI is to automate innovative power grid operations. To move from Distribution Network Operators (DSO) to consumer-centric distributed power grid management, the blockchain and smart contracts are applicable. Blockchain technology and integrated SGs will present challenges, limiting the deployment of Distributed Energy Resources (DERs). This review looks at the decentralization of the Smart Grid 2.0 using blockchain technology. Energy trading has increased due to access to distributed energy sources and electricity producers who can financially export surplus fuels. The energy trading system successfully combines energy from multiple sources to ensure consistent and optimal use of available resources and better facilities for energy users. Peer-to-peer (P2P) energy trading is a common field of study that presents some administrative and technical difficulties. This article provides a general overview of P2P energy exchange. It discusses how blockchain can improve transparency and overall performance, including the degree of decentralization, scalability, and device reliability. The research is extended to examine unresolved issues and potential directions for P2P blockchain-based energy sharing in the future. In fact, this paper also demonstrates the importance of blockchain in future smart grid activities and its blockchain-based applications. The study also briefly examines the issues associated with blockchain integration, ensuring the decentralized, secure and scalable operation of autonomous electric grids in the future.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9656188PMC
http://dx.doi.org/10.3390/s22218397DOI Listing

Publication Analysis

Top Keywords

energy trading
16
smart grid
16
energy
12
energy internet
8
blockchain future
8
future smart
8
power grid
8
blockchain technology
8
distributed energy
8
p2p energy
8

Similar Publications

Decoding the trajectory of antibiotic resistance genes in saline and alkaline soils: Insights from different fertilization regimes.

Environ Int

December 2024

Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, MARA, Tianjin and Tianjin Key Laboratory of Agro-Environment and Agro-Product Safety, Tianjin 300191, China. Electronic address:

The soil salinity and alkalinity play an important role in the occurrence and proliferation of antibiotic resistance genes (ARGs). Yet, little is known the underlying mechanism by which soil salinity and alkalinity affect antibiotic resistance evolution. Here we investigated the ARGs variation in soil salinity and alkalinity environments created by different fertilization, and explored the biological mechanisms that salinity and alkalinity alter the evolutionary paradigm of antibiotic resistance.

View Article and Find Full Text PDF

Background: Despite a wealth of literature on marital dissatisfaction and adverse health outcomes, little is known about the relationship between marital dissatisfaction and frailty in older adults.

Methods: This longitudinal study utilised the data of 11 174 individuals who participated in the biennial Korean Longitudinal Study of Ageing survey from 2006 to 2020 and were aged ≥45 during the initial wave. Frailty was measured using a frailty instrument, which utilised exhaustion, social isolation, and handgrip strength weakness.

View Article and Find Full Text PDF

The cost-effective scheduling of distributed energy resources through sophisticated optimization algorithms is the main focus of recent work on microgrid energy management. In order to improve load factor and efficiency, load-shifting techniques are frequently used in conjunction with additional complex constraints such as PHEV scheduling and battery life assessment. Pollutant reduction, however, is rarely highlighted as a primary goal.

View Article and Find Full Text PDF

Study on a Strategy to Improve the Image Quality and Imaging Depth for Novel Synthetic Aperture Schemes: An Experimental Investigation.

Ultrason Imaging

January 2025

Biomedical Ultrasound Imaging Laboratory, Department of Applied Mechanics and Biomedical Engineering, Indian Institute of Technology, Madras, Chennai, India.

Imaging depth remains a restriction for Synthetic Aperture (SA) approaches, even though SA techniques have been shown to overcome some of the drawbacks of Conventional Focused Beamforming (CFB) technique. This limitation is attributed to lesser energy per transmit in SA techniques compared to that of CFB technique. Therefore, in this paper, a systematic investigation is done to evaluate the improvement in imaging depth and image quality of B-mode ultrasound images in the case of SA technique using PZT transducer by boosting the input voltage to the transducer, while measuring the acoustic exposure parameters recommended in international standards.

View Article and Find Full Text PDF

Linear Enhanced 3D Nanofluid Force-Electric Conversion Device.

Adv Mater

January 2025

Hubei key laboratory of energy storage and power battery, School of Mathematics, Physics and Optoelectronic Engineering, Hubei University of Automotive Technology, Shiyan, 442002, P. R. China.

The inherent trade-off between permeability and selectivity has constrained further improvement of passive linear force-electric conversion performance in nanofluidic pressure sensors. To overcome this limitation, a 3D nanofluidic membrane with high mechanical strength utilizing aramid nanofibers/carbon nanofiber (ANF/CNF) dual crosslinking is developed. Due to the abundant surface functional groups of CNF and the high mechanical strength of ANF, this large-scale integrated 3D nanofluidic membrane exhibits advantages of high flux, high porosity, and short ion transport path, demonstrating superior force-electric response compared to conventional 1D and 2D configurations.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!