Gradient Index Metasurface Lens for Microwave Imaging.

Sensors (Basel)

Department of Electrical and Computer Engineering, Michigan State University, East Lansing, MI 48824, USA.

Published: October 2022

This paper presents the design, simulation and experimental validation of a gradient-index (GRIN) metasurface lens operating at 8 GHz for microwave imaging applications. The unit cell of the metasurface consists of an electric-LC (ELC) resonator. The effective refractive index of the metasurface is controlled by varying the capacitive gap at the center of the unit cell. This allows the design of a gradient index surface. A one-dimensional gradient index lens is designed and tested at first to describe the operational principle of such lenses. The design methodology is extended to a 2D gradient index lens for its potential application as a microwave imaging device. The metasurface lenses are designed and analyzed using full-wave finite element (FEM) solver. The proposed 2D lens has an aperture of size 119 mm (3.17λ) × 119 mm (3.17λ) and thickness of only 0.6 mm (0.016λ). Horn antenna is used as source of plane waves incident on the lens to evaluate the focusing performance. Field distributions of the theoretical designs and fabricated lenses are analyzed and are shown to be in good agreement. A microwave nondestructive evaluation (NDE) experiment is performed with the 2D prototype lens to image a machined groove in a Teflon sample placed at the focal plane of the lens.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9654608PMC
http://dx.doi.org/10.3390/s22218319DOI Listing

Publication Analysis

Top Keywords

microwave imaging
12
lens
8
metasurface lens
8
unit cell
8
gradient lens
8
119 317λ
8
gradient
4
gradient metasurface
4
microwave
4
lens microwave
4

Similar Publications

Circulating Tumor DNA Detection for Recurrence Monitoring of Stage I Non-Small Cell Lung Cancer Treated With Microwave Ablation.

Thorac Cancer

January 2025

Department of Minimally Invasive Tumor Therapies Center, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China.

Purpose: As microwave ablation continues to be used in patients with inoperable stage I non-small cell lung cancer (NSCLC), it is particularly important to monitor efficacy. Whether plasma ctDNA detection can predict its efficacy should be illustrated.

Methods: We recruited 43 patients with inoperative stage I NSCLC, all of whom underwent biopsy-synchronous microwave ablation (MWA).

View Article and Find Full Text PDF

Ultrasound‑guided Percutaneous Radiofrequency and Microwave Ablation for Cervical Lymph Node Metastasis from Papillary Thyroid Carcinoma: A Systematic Review and Meta‑analysis of Clinical Efficacy and Safety.

Acad Radiol

January 2025

Department of Diagnostic and Therapeutic Ultrasonography, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China (A.U., L.C., L.Y., W.X.). Electronic address:

Aim: To evaluate the efficacy and safety of radiofrequency ablation (RFA) and microwave ablation (MWA) for treating cervical lymph node metastasis (CLNM) from papillary thyroid carcinoma (PTC).

Methods: Medline, EMBASE, Web of Science, and Cochrane Library were searched for studies on the efficacy and safety of thermal ablations for treating CLNM from PTC until July 2024. Among 544 papers, 11 articles were reviewed involving 233 patients and 432 CLNM cases.

View Article and Find Full Text PDF

Purpose: Contrast-enhanced CT (CECT) may be performed immediately following microwave liver ablation for assessment of ablative margins. However, practices and protocols vary among institutions. Here, we compare a standardized bolus-tracked biphasic CECT protocol and compare this with a single venous phase fixed delay protocol for ablation zone (AZ) assessment.

View Article and Find Full Text PDF

Wireless microwave-to-optical conversion via programmable metasurface without DC supply.

Nat Commun

January 2025

State Key Laboratory of Millimeter Waves, School of Information Science and Engineering, Southeast University, Nanjing, China.

Microwave-optical interaction and its effective utilization are vital technologies at the frontier of classical and quantum sciences for communication, sensing, and imaging. Typically, state-of-the-art microwave-to-optical converters are realized by fiber and circuit approaches with multiple processing steps, and external powers are necessary, which leads to many limitations. Here, we propose a programmable metasurface that can achieve direct and high-speed free-space microwave-to-laser conversion.

View Article and Find Full Text PDF

Cancer and its diverse variations pose one of the most significant threats to human health and well-being. One of the most aggressive forms is blood cancer, originating from bone marrow cells and disrupting the production of normal blood cells. The incidence of blood cancer is steadily increasing, driven by both genetic and environmental factors.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!