Planning and decision-making are critical managerial functions involving the brain's executive functions. However, little is known about the effect of cerebral activity during long-time learning while planning and decision-making. This study investigated the impact of planning and decision-making processes in long-time learning, focusing on a cerebral activity before and after learning. The methodology of this study involves the Tower of Hanoi (ToH) to investigate executive functions related to the learning process. Generally, ToH is used to measure baseline performance, learning rate, offline learning (following overnight retention), and transfer. However, this study performs experiments on long-time learning effects for ToH solving. The participants were involved in learning the task over seven weeks. Learning progress was evaluated based on improvement in performance and correlations with the learning curve. All participants showed a significant improvement in planning and decision-making over seven weeks of time duration. Brain activation results from fMRI showed a statistically significant decrease in the activation degree in the dorsolateral prefrontal cortex, parietal lobe, inferior frontal gyrus, and premotor cortex between before and after learning. Our pilot study showed that updating information and shifting issue rules were found in the frontal lobe. Through monitoring performance, we can describe the effect of long-time learning initiated at the frontal lobe and then convert it to a task execution function by analyzing the frontal lobe maps. This process can be observed by comparing the learning curve and the fMRI maps. It was also clear that the degree of activation tends to decrease with the number of tasks, such as through the mid-phase and the end-phase of training. The elucidation of this structure is closely related to decision-making in human behavior, where brain dynamics differ between "thinking and behavior" during complex thinking in the early stages of training and instantaneous "thinking and behavior" after sufficient training. Since this is related to human learning, elucidating these mechanisms will allow the construction of a brain function map model that can be used universally for all training tasks.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9654550PMC
http://dx.doi.org/10.3390/s22218283DOI Listing

Publication Analysis

Top Keywords

long-time learning
20
planning decision-making
16
learning
15
frontal lobe
12
tower hanoi
8
hanoi toh
8
pilot study
8
executive functions
8
cerebral activity
8
learning curve
8

Similar Publications

Enhanced sampling (ES) simulations of biomolecular recognition, such as binding small molecules to proteins and nucleic acid targets, protein-protein association, and protein-nucleic acid interactions, have gained significant attention in the simulation community because of their ability to sample long-time scale processes. However, a key challenge in implementing collective variable (CV)-based enhanced sampling methods is the selection of appropriate CVs that can distinguish the system's metastable states and, when biased, can effectively sample these states. This challenge is particularly acute when the binding of a flexible molecule to a conformationally rich host molecule is simulated, such as the binding of a peptide to an RNA.

View Article and Find Full Text PDF

A hitchhiker's guide to active motion.

Eur Phys J E Soft Matter

January 2025

Institut für Theoretische Physik II: Weiche Materie, Heinrich-Heine-Universität Düsseldorf, Universitätsstraße 1, 40225, Düsseldorf, Germany.

Intelligent decisions in response to external informative input can allow organisms to achieve their biological goals while spending very little of their own resources. In this paper, we develop and study a minimal model for a navigational task, performed by an otherwise completely motorless particle that possesses the ability of hitchhiking in a bath of active Brownian particles (ABPs). Hitchhiking refers to identifying and attaching to suitable surrounding bath particles.

View Article and Find Full Text PDF

To improve the calculation accuracy of the Monte Carlo (MC) method and reduce the calculation time. Firstly, CNN and LSTM deep learning networks are introduced for designing nonlinear dynamic systems simulating dam stress. Then, spatial feature mining and sequence information extraction of nonlinear data of dam stress are carried out respectively, and a combined prediction model of dam stress depth (DS-FEM-CNN-LSTM) is proposed.

View Article and Find Full Text PDF

Radiomics and deep learning models for glioblastoma treatment outcome prediction based on tumor invasion modeling.

Phys Med

December 2024

Division of Medical Radiation Physics, Department of Physics, Stockholm University, Stockholm, Sweden; Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden.

Purpose: We investigate the feasibility of using a biophysically guided approach for delineating the Clinical Target Volume (CTV) in Glioblastoma Multiforme (GBM) by evaluating its impact on the treatment outcomes, specifically Overall Survival (OS) time.

Methods: An established reaction-diffusion model was employed to simulate the spatiotemporal evolution of cancerous regions in T1-MRI images of GBM patients. The effects of the parameters of this model on the simulated tumor borders were quantified and the optimal values were used to estimate the distribution of infiltrative cells (CTVmodel).

View Article and Find Full Text PDF

Self-study is essential for student learning, and active learning methods aim to facilitate constructive self-study time usage. How active learning strategies actually affect student self-study in medical education, however, remains partly unknown. The aim of this study was to examine medical students' use of self-study time in a longitudinal integrated clerkship employing active learning strategies.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!