A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Class-Aware Fish Species Recognition Using Deep Learning for an Imbalanced Dataset. | LitMetric

Fish species recognition is crucial to identifying the abundance of fish species in a specific area, controlling production management, and monitoring the ecosystem, especially identifying the endangered species, which makes accurate fish species recognition essential. In this work, the fish species recognition problem is formulated as an object detection model to handle multiple fish in a single image, which is challenging to classify using a simple classification network. The proposed model consists of MobileNetv3-large and VGG16 backbone networks and an SSD detection head. Moreover, a class-aware loss function is proposed to solve the class imbalance problem of our dataset. The class-aware loss takes the number of instances in each species into account and gives more weight to those species with a smaller number of instances. This loss function can be applied to any classification or object detection task with an imbalanced dataset. The experimental result on the large-scale reef fish dataset, SEAMAPD21, shows that the class-aware loss improves the model over the original loss by up to 79.7%. The experimental result on the Pascal VOC dataset also shows the model outperforms the original SSD object detection model.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9658540PMC
http://dx.doi.org/10.3390/s22218268DOI Listing

Publication Analysis

Top Keywords

fish species
20
species recognition
16
object detection
12
class-aware loss
12
species
8
imbalanced dataset
8
detection model
8
loss function
8
number instances
8
experimental result
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!