FAPNET: Feature Fusion with Adaptive Patch for Flood-Water Detection and Monitoring.

Sensors (Basel)

Multimedia Research Centre, University of Alberta, Edmonton, AB T6G 2E8, Canada.

Published: October 2022

In satellite remote sensing applications, waterbody segmentation plays an essential role in mapping and monitoring the dynamics of surface water. Satellite image segmentation-examining a relevant sensor data spectrum and identifying the regions of interests to obtain improved performance-is a fundamental step in satellite data analytics. Satellite image segmentation is challenging for a number of reasons, which include cloud interference, inadequate label data, low lighting and the presence of terrain. In recent years, Convolutional Neural Networks (CNNs), combined with (satellite captured) multispectral image segmentation techniques, have led to promising advances in related research. However, ensuring sufficient image resolution, maintaining class balance to achieve prediction quality and reducing the computational overhead of the deep neural architecture are still open to research due to the sophisticated CNN hierarchical architectures. To address these issues, we propose a number of methods: a multi-channel Data-Fusion Module (DFM), Neural Adaptive Patch (NAP) augmentation algorithm and re-weight class balancing (implemented in our PHR-CB experimental setup). We integrated these techniques into our novel Fusion Adaptive Patch Network (FAPNET). Our dataset is the Sentinel-1 SAR microwave signal, used in the Microsoft Artificial Intelligence for Earth competition, so that we can compare our results with the top scores in the competition. In order to validate our approach, we designed four experimental setups and in each setup, we compared our results with the popular image segmentation models UNET, VNET, DNCNN, UNET++, U2NET, ATTUNET, FPN and LINKNET. The comparisons demonstrate that our PHR-CB setup, with class balance, generates the best performance for all models in general and our FAPNET approach outperforms relative works. FAPNET successfully detected the salient features from the satellite images. FAPNET with a MeanIoU score of 87.06% outperforms the state-of-the-art UNET, which has a score of 79.54%. In addition, FAPNET has a shorter training time than other models, comparable to that of UNET (6.77 min for 5 epochs). Qualitative analysis also reveals that our FAPNET model successfully distinguishes micro waterbodies better than existing models. FAPNET is more robust to low lighting, cloud and weather fluctuations and can also be used in RGB images. Our proposed method is lightweight, computationally inexpensive, robust and simple to deploy in industrial applications. Our research findings show that flood-water mapping is more accurate when using SAR signals than RGB images. Our FAPNET architecture, having less parameters than UNET, can distinguish micro waterbodies accurately with shorter training time.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9656710PMC
http://dx.doi.org/10.3390/s22218245DOI Listing

Publication Analysis

Top Keywords

adaptive patch
12
image segmentation
12
fapnet
9
fusion adaptive
8
satellite image
8
low lighting
8
class balance
8
images fapnet
8
shorter training
8
training time
8

Similar Publications

Omental patch repair is a crucial surgical procedure for managing gastrointestinal perforations, particularly those associated with peptic ulcers, necessitating a detailed review of its effectiveness and outcomes. This literature review aims to assess current knowledge on omental patch repair, focusing on advancements in surgical techniques and patient outcomes. Major medical databases, including PubMed, Scopus, and Web of Science, were searched for relevant studies published between 2020 and 2024, prioritizing those that explored omental patch repair, surgical methods, and associated clinical outcomes.

View Article and Find Full Text PDF

In the face of unabated urban expansion, understanding the intrinsic characteristics of landscape structure is pertinent to preserving ecological diversity and managing the supply of ecosystem services. This study integrates machine-learning-based geospatial and landscape ecological techniques to assess the dynamics of landscape structure in cities of the rainforest (Akure and Owerri) and Guinea savanna (Makurdi and Minna) ecological regions of Nigeria between 1986 and 2022. Supervised classification using the random forest (RF) machine-learning classifier was performed on Landsat images on the Google Earth Engine (GEE) platform, and landscape metrics were calculated with FRAGSTATS to assess landscape composition, configuration, and connectivity.

View Article and Find Full Text PDF

Purpose: Breast cancer encompasses various subtypes with distinct prognoses, necessitating accurate stratification methods. Current techniques rely on quantifying gene expression in limited subsets. Given the complexity of breast tissues, effective detection and classification of breast cancer is crucial in medical imaging.

View Article and Find Full Text PDF

Background: Photon-counting computed tomography (CT) is an advanced imaging technique that enables multi-energy imaging from a single scan. However, the limited photon count assigned to narrow energy bins leads to increased quantum noise in the reconstructed spectral images. To address this issue, leveraging the prior information in the spectral images is essential.

View Article and Find Full Text PDF

Viral infections are characterized by dispersal from an initial site to secondary locations within the host. How the resultant spatial heterogeneity shapes within-host genetic diversity and viral evolutionary pathways is poorly understood. Here, we show that virus dispersal within and between the nasal cavity and trachea maintains diversity and is therefore conducive to adaptive evolution, whereas dispersal to the lungs gives rise to population heterogeneity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!