Recent acoustic telemetry positioning systems are able to reconstruct the positions and trajectories of organisms at a scale of a few centimeters to a few meters. However, they present several logistical constraints including receiver maintenance, calibration procedures and limited access to real-time data. We present here a novel, easy-to-deploy, energy self-sufficient underwater positioning system based on the time difference of arrival (TDOA) algorithm and the Global System for Mobile (GSM) communication technology, capable of locating tagged marine organisms in real time. We provide an illustration of the application of this system with empirical examples using continuous and coded tags in fish and benthic invertebrates. In situ experimental tests of the operational system demonstrated similar performances to currently available acoustic positioning systems, with a global positioning error of 7.13 ± 5.80 m (mean ± SD) and one-third of the pings can be localized within 278 m of the farthest buoy. Despite some required improvements, this prototype is designed to be autonomous and can be deployed from the surface in various environments (rivers, lakes, and oceans). It was proven to be useful to monitor a wide variety of species (benthic and pelagic) in real time. Its real-time property can be used to rapidly detect system failure, optimize deployment design, or for ecological or conservation applications.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9654034 | PMC |
http://dx.doi.org/10.3390/s22218208 | DOI Listing |
ACS Mater Au
January 2025
Department of Biomedical Engineering, Tel Aviv University, Tel Aviv 6997801, Israel.
Gas bubbles, commonly used in medical ultrasound (US), witness advancements with nanobubbles (NB), providing improved capabilities over microbubbles (MB). NBs offer enhanced penetration into capillaries and the ability to extravasate into tumors following systemic injection, alongside prolonged circulation and persistent acoustic contrast. Low-frequency insonation (<1 MHz) with NBs holds great potential in inducing significant bioeffects, making the monitoring of their acoustic response critical to achieving therapeutic goals.
View Article and Find Full Text PDFBMC Geriatr
January 2025
Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China.
Background: This particular case is a world-first with no previous literature reports on patients presenting with both benign acoustic schwannoma and malignant ependymoma.
Case Presentation: A 60-year-old woman with unexplained right-sided hearing loss that had worsened progressively over 4 years, along with intermittent dizziness that had begun 3 years prior. Our preliminary diagnosis included: (1) Right acoustic neuroma; (2) Ependymoma of the fourth ventricle; and (3) Hydrocephalus.
The cochlear nuclear complex (CN), the starting point for all central auditory processing, encompasses a suite of neuronal cell types highly specialized for neural coding of acoustic signals. However, the molecular logic governing these specializations remains unknown. By combining single-nucleus RNA sequencing and Patch-seq analysis, we reveal a set of transcriptionally distinct cell populations encompassing all previously observed types and discover multiple hitherto unknown subtypes with anatomical and physiological identity.
View Article and Find Full Text PDFJASA Express Lett
January 2025
Department of Linguistics, Yale University, New Haven, Connecticut 06520,
This study investigates the articulatory correlates of consonantal length contrasts in Japanese mimetic words using electromagnetic articulography data. Regression and dynamic time warping analyses applied to intragestural timing, kinematic properties, and intergestural timing reveal that Japanese geminates are characterized by longer closure phases, longer gestural plateaus, higher tongue tip positions, larger movements, and lower stiffness. Geminates also exhibit distinct timing relationships with adjacent vowels, specifically, longer times to target that allow for longer preceding vowels.
View Article and Find Full Text PDFFASEB J
January 2025
Department of Urology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.
Acute Kidney Injury (AKI) is a significant medical condition characterized by the abrupt decline in kidney function.Low-intensity pulsed ultrasound (LIPUS), a non-invasive therapeutic technique employing low-intensity acoustic wave pulses, has shown promise in promoting tissue repair and regeneration. A novel LIPUS system was developed and evaluated in rat AKI models, focusing on its effects on glomerular filtration rate (GFR), blood urea nitrogen (BUN), serum creatinine (SCr), and the Notch1-Akt-eNOS signaling pathway.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!