In recent decades, extreme floods and droughts have occurred frequently around the world, which seriously threatens the social and economic development and the safety of people's lives and properties. Therefore, it is of great scientific significance to discuss the causes and characteristic quantization of extreme floods and droughts. Here, the terrestrial water storage change (TWSC) derived from the Gravity Recovery and Climate Experiment (GRACE) and its Follow-On (GRACE-FO) data was used to characterize the floods and droughts in the Yangtze River basin (YRB) during 2003 and 2020. To reduce the uncertainty of TWSC results, the generalized three-cornered hat and least square methods were used to fuse TWSC results from six GRACE solutions. Then combining precipitation (PPT), evapotranspiration, soil moisture (SM), runoff, and extreme climate index data, the influence of climate change on floods and droughts in the YRB was discussed and analyzed. The results show that the fused method can effectively improve the uncertainty of TWSC results. And seven droughts and seven floods occurred in the upper of YRB (UY) and nine droughts and six floods appeared in the middle and lower of YRB (MLY) during the study period. The correlation between TWSC and PPT (0.33) is the strongest in the UY, and the response time between the two is 1 month, while TWSC and SM (0.67) are strongly correlated with no delay in the MLY. The reason for this difference is mainly due to the large-scale hydropower development in the UY. Floods and droughts in the UY and MLY are more influenced by the El Niño-Southern Oscillation (ENSO) (correlation coefficients are 0.39 and 0.50, respectively) than the Indian Ocean Dipole (IOD) (correlation coefficients are 0.19 and 0.09, respectively). The IOD event is usually accompanied by the ENSO event (the probability is 80%), and the hydrological hazards caused by independent ENSO events are less severe than those caused by these two extreme climate events in the YRB. Our results provide a reference for the study on the formation, development, and recovery mechanism of regional floods and droughts on a global scale.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9658109PMC
http://dx.doi.org/10.3390/s22218178DOI Listing

Publication Analysis

Top Keywords

floods droughts
24
droughts floods
12
droughts
9
floods
9
influence climate
8
climate change
8
yangtze river
8
river basin
8
2003 2020
8
extreme floods
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!