Researchers have focused on incorporating porous carbon particles such as carbon-derived carbon (CDC) into polypyrrole (PPy), preferably on the surface, to achieve high-capacitive electrodes. Less attention is afforded to their linear actuation properties. Therefore, in this work, we chose two different electropolymerization processes using the typical PPy doped with dodecylbenzene sulfonate (DBS) and added CDC particles, compared with CDC with phosphotungstic acid (PTA), forming CDC-PT dopants. The resulting PPy/DBS-CDC (PPyCDC) and PPy/DBS-CDC-PT (PPyCDC-PT) films showed different morphologies, with PPyCDC having the most CDC particles on the surface with less surrounding PPy, while in PPyCDC-PT, all the CDC particles were covered with PPy. Their linear actuation properties, applying electrochemical techniques (cyclic voltammetry and square wave potential steps), were found to enhance the PPyCDC-PT films in organic (2-times-higher strain) and aqueous electrolytes (2.8-times-higher strain) in an applied potential range of 0.8 V to -0.5 V. The energy storage capability found for the PPyCDC was favorable, with 159 ± 13 F cm (1.2 times lower for PPyCDC-PT) in the organic electrolyte, while in the aqueous electrolyte, a result of 135 ± 11 F cm was determined (1.8 times lower for PPyCDC-PT). The results showed that PPyCDC was more favorable in terms of energy storage, while PPyCDC-PT was suitable for linear actuator applications. The characterization of both the film samples included scanning electron microscopy (SEM), Raman, FTIR, and energy-dispersive X-ray (EDX) spectroscopy.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9658178 | PMC |
http://dx.doi.org/10.3390/polym14214757 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!