Hybrid phenol-formaldehyde (PF) resins represent one of the most important niche groups of binding systems for composites. New industrial needs, environmental requirements, and price fluctuations have led to further research on materials with enhanced mechanical and thermal properties. The preparation of novel hybrid materials can be achieved by inclusion of various elements or functional groups in the organic polymer phenolic framework. Herein, we report the synthesis and characterization of a PF-based hybrid material with different nanoscale silicone species and ZnAl-layered double hydroxide (LDH). The main goals of this study were to improve the synthetic pathways of hybrid resin, as well as to prepare granulated composite materials and test samples and determine their characterization. Added inorganic species increased the glass-transition temperature by a minimum of 8 °C, which was determined using differential scanning calorimetry (DSC). Rheological properties (melting viscosity and flow distance) of the hybrid resin were measured. The homogeneity of distribution of added species across the organic matrix was evaluated with scanning electron microscopy (SEM). With synthesized new hybrid-binding systems, we prepared different granulated composite materials and evaluated them with the measurements of rheological properties (flow curing characteristics). Tensile strength of samples, prepared from granulated composite material, improved by more than 5%.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9657187PMC
http://dx.doi.org/10.3390/polym14214684DOI Listing

Publication Analysis

Top Keywords

granulated composite
12
phenol-formaldehyde resin
8
preparation novel
8
hybrid phenol-formaldehyde
8
hybrid resin
8
composite materials
8
rheological properties
8
prepared granulated
8
hybrid
6
improved synthetic
4

Similar Publications

This study evaluated the effects of malic acid vacuum microwave preconditioning (MVMP) on lotus root (LR) by examining its moisture content, dielectric properties, microstructure, and starch characteristics, including modifications in starch structure and composition. Dielectric properties and LF-NMR indicated that the dielectric constant (ε') was closely associated to moisture content and state, while changes in water migration depended on microwave power and the dielectric loss factor (ε″). Increased microwave power and malic acid concentration resulted in microstructural damage (indentation and breakage of starch granules) and starch hydrolysis into smaller particles.

View Article and Find Full Text PDF

This study aimed to investigate the potential protective properties of a traditional Chinese medicine (TCM) herbal product, Siraitia grosvenorii granules (SGG) against PM2.5-induced lung injury, as well as their active constituents and underlying mechanisms. The chemical composition of SGG, such as wogonin (MOL000173), luteolin (MOL000006), nobiletin (MOL005828), naringenin (MOL004328), acacetin (MOL001689), were identified via ultra-high-performance liquid chromatography-Q Exactive (UHPLC-QE) Orbitrap/MS.

View Article and Find Full Text PDF

Introduction: The traditional Chinese medicine formula, Bushen Daozhuo Granules (BSDZG), is used to treat chronic non-bacterial prostatitis (CNP) clinically. However, its mechanism of action is unclear. The aim of our study was to determine the effect of BSDZG on CNP and its underlying mechanisms.

View Article and Find Full Text PDF

Unlabelled: Periodontitis is closely related to renal health, but the specific influence of (), a key pathogen in periodontitis, on the development of acute kidney injury (AKI) in mice has not been fully elucidated. In our study, AKI was induced in mice through ischemia-reperfusion injury while administering oral infection with . Comprehensive analyses were conducted, including 16S rRNA sequencing, liquid chromatography-mass spectrometry (LC-MS) metabolomics, and transcriptome sequencing.

View Article and Find Full Text PDF

Assessing the inhalation hazard of microplastics is important but necessitates sufficient quantity of microplastics that are representative and respirable (<4 µm). Common plastics are not typically manufactured in such small sizes. Here, solvent precipitation is used to produce respirable test materials from thermoplastics polyurethane (TPU), polyamide (PA-6), polyethylene terephthalate (PET), and low-density polyethylene (LDPE).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!