The lack of suitable functional groups for cell adhesion on the surface of Polycaprolactone (PCL) is one of the main limitations in order to use PCL for biomedical applications. The aim of this research is to modify the PCL film surface using arginine, via an aminolysis reaction. In this regard, after PCL films formation by casting method, they were immersed in arginine solutions of various concentration at room temperature or then heated to 40 °C and in the presence of isopropanol or without it. To assess the structure of the modified surface, its wettability, and mechanical properties, methods of measuring the contact angle and the strip tensile test were used, and to compare the degree of attachment and the rate of cell proliferation, the method of fluorescent staining of cultured cells was used. The change in protein synthesis by cells on the modified surface was assessed using Western blotting. The results obtained show that the treatment of PCL films with an aqueous solution of arginine at room temperature for 1 day increases the hydrophilicity of the surface. Wherein surface modification led to a two-fold decrease of mechanical strength and flow stress, but elongation increase by about 30% for PCL films after modification in 0.5 M aqueous arginine solution at room temperature. Moreover, cell attachment and proliferation, as well as collagen synthesis, were significantly enhanced after arginine modification. The proposed simple and effective method for modifying PCL films with arginine significantly expands the possibilities for developing biocompatible scaffolds for tissue engineering.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9659175 | PMC |
http://dx.doi.org/10.3390/polym14214654 | DOI Listing |
J Hazard Mater
January 2025
Department of Molecular Microbiology and Biotechnology, Institute of Biochemistry, Life Sciences Center, Vilnius University, Saulėtekio Av. 7, Vilnius 10257, Lithuania.
Enzymatic degradation of plastic pollution offers a promising environmentally friendly waste management strategy, however, suitable biocatalysts must be screened and developed. Traditional screening methods using soluble or solubilised polymers do not necessarily identify enzymes that are effective against solid or crystalline polymers. This study presents a simple, time-saving and cost-effective method for identifying microorganisms and enzymes capable of degrading polymeric films.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Department of Food Science and Technology, Sunchon National University, Suncheon, Jeonnam 57922, Republic of Korea; Bio-Healthcare Research and Analysis Center, Sunchon National University, Suncheon, Jeonnam 57922, Republic of Korea; Glocal University Project Team, Sunchon National University, 255 Jungangno, Suncheon 57922, Jeonnam, Republic of Korea. Electronic address:
Hybrid environmentally friendly nanocomposite films were synthesized via electrospinning using polycaprolactone (PCL) and chitosan (CH). The resulting nanofiber films displayed a homogeneous fibrous microstructure with average diameters between 250-270 nm. Molecular simulation experiments revealed a progressive increase in hydrogen bonding over time.
View Article and Find Full Text PDFAdv Sci (Weinh)
December 2024
MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, Zhejiang, 310058, China.
Corneal blindness is a significant reason for visual impairment globally. Researchers have been investigating several methods for corneal regeneration in order to cure these patients. Biomaterials are favored due to their biocompatibility and capacity to promote cell adhesion.
View Article and Find Full Text PDFAdv Mater
December 2024
Engineering Research Center of Energy Storage Materials and Devices Ministry of Education, School of Chemistry, Xi'an Jiaotong University, Xi'an, 710049, China.
Hydrogels with mechanical performances similar to load-bearing tissues are in demand for in vivo applications. In this work, inspired by the self-assembly behavior of amphiphilic polymers, polyurethane-based tough hydrogels with a multiple hydrogen-bond interlocked bicontinuous phase structure through in situ water-induced microphase separation strategy are developed, in which poly(ethylene glycol)-based polyurethane (PEG-PU, hydrophilic) and poly(ε-caprolactone)-based polyurethane (PCL-PU, hydrophobic) are blended to form dry films followed by water swelling. A multiple hydrogen bonding factor, imidazolidinyl urea, is introduced into the synthesis of the two polyurethanes, and the formation of multiple hydrogen bonds between PEG-PU and PCL-PU can promote homogeneous microphase separation for the construction of bicontinuous phase structures in the hydrogel network, by which the hydrogel features break strength of 12.
View Article and Find Full Text PDFPolymers (Basel)
November 2024
Instituto Universitario de Ingeniería de Alimentos (FoodUPV), Universitat Politècnica de València, Camí de Vera s/n, 46022 València, Spain.
Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) is a biodegradable biopolymer from the PHAs family that has potential to replace conventional plastics and reduce plastic pollution. However, PHBV has thermo-sealability issues, making it challenging to use for bags. Blending it with polycaprolactone (PCL) could address this but may alter the barrier properties of the films, affecting their effectiveness as food packaging material.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!