Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Clay is one of the important base materials in slope restoration. The adhesion of clay-rock interface plays a decisive role in the repairing effect on rock slopes. Fibers and polymers are widely used as a clay improvement method in rock slope repair. In this paper, the friction effect of sisal fiber and polyvinyl acetate (PVAc)-reinforced clay was studied through the design of an indoor rock-like interface sliding model test. Using modelled test results and scanning electron microscope (SEM) images, the reinforced clay was analyzed. The test results showed that the critical sliding angle and maximum static friction force of clay decreased with the increase of moisture content. An excess of fiber content and moisture content weakens the coupling effect of fiber-anchoring clay. Fiber content of 0.8% and PVAc content of 2% had the best effect on enhancing the sliding resistance of clay and provided good adhesion for dangerous interfaces of rock slope at 35° and 45°, respectively. PVAc formed a three-dimensional networked elastic membrane structure to improve the skid resistance and dynamic friction coefficient of the clay. The results provide an effective way for soil improvement and ecological restoration.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9659047 | PMC |
http://dx.doi.org/10.3390/polym14214626 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!