The actual process of using a resin to glue can optimize many shortcomings in the basic traditional process of welding a motor core. For example, the use of a resin for gluing can lead to a reduction in iron loss, improve rigidity, reduce processing times, and improve product quality. When using a gluing method, the biggest challenge is the distribution of the resin; therefore, resin distribution is very much important. This experiment used fine mesh nets to eventually improve the unbalanced state of resin distribution. In this research, in order to predict real flow behavior during gluing, computer-aided engineering was used for computer simulation. The results of the simulation showed that the illustrated trend of the filling process was very much similar to the actual experimental results. The simulation results could mostly predict defects and make effective improvements, which can lead to a significant reduction in the money and time spent on experiments. The simulation results of the dipping process also showed that the distribution of resin with fine mesh nets was more even than without fine mesh nets. Fine mesh nets can eventually improve an over-flow problem, which, ultimately, causes bumps. In this research, a simulation analysis of the gluing process of a motor core with fine mesh nets was conducted, and the results show that the resin distribution and the flow front of the runner were more even than those without fine mesh nets.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9655634 | PMC |
http://dx.doi.org/10.3390/polym14214596 | DOI Listing |
Materials (Basel)
December 2024
Faculty of Architecture and Civil Engineering, TU Dortmund University, 44227 Dortmund, Germany.
Industrial and construction wastes make up about half of all world wastes. In order to reduce their negative impact on the environment, it is possible to use part of them for concrete production. Using experimental-statistical modeling techniques, the combined effect of brick powder, recycling sand, and alkaline activator on fresh and hardened properties of self-compacting concrete for the production of textile-reinforced concrete was investigated.
View Article and Find Full Text PDFIndian J Plast Surg
December 2024
Department of Radiodiagnosis, All India Institute of Medical Sciences, Rishikesh, Uttarakhand, India.
Sci Rep
December 2024
Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY, USA.
Consumers vary in their excretion of nitrogen and phosphorus, altering nutrient cycles and ecosystem function. Traditional mass balance models that focus on dietary and tissue nutrients have poorly explained such variation in excretion. Here, we contrast diet and tissue nutrient models for nutrient excretion with predation risk, an often overlooked factor, using the Trinidadian guppy (Poecilia reticulata) as our model system.
View Article and Find Full Text PDFSmall
December 2024
Department of Chemical Engineering, Queen's University, Kingston, ON, K7L 3N6, Canada.
Electrochemical carbon dioxide (CO) reduction from aqueous solutions offers a promising strategy to overcome flooding and salt precipitation in gas diffusion electrodes used in gas-phase CO electrolysis. However, liquid-phase CO electrolysis often exhibits low CO reduction rates because of limited CO availability. Here, a macroporous Ag mesh is employed and activated to achieve selective CO conversion to CO with high rates from an aqueous bicarbonate solution.
View Article and Find Full Text PDFComput Biol Med
December 2024
Inria, Univ. Grenoble Alpes, CNRS, Grenoble INP, LJK, France.
This study introduces a novel deep learning approach for 3D teeth scan segmentation and labeling, designed to enhance accuracy in computer-aided design (CAD) systems. Our method is organized into three key stages: coarse localization, fine teeth segmentation, and labeling. In the teeth localization stage, we employ a Mask-RCNN model to detect teeth in a rendered three-channel 2D representation of the input scan.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!