In this study, an antagonistic actuator using dielectric elastomer actuators (DEAs) is developed to investigate the use of rolled DEAs in underwater robots. The actuator consists of a backbone, an elastic hinge, and two rolled DEAs placed in an antagonistic fashion, allowing for the generation of bidirectional movements of the actuator tip. To prove this concept, an analytical model of the actuator is built. The experimental samples are fabricated based on the specification determined by the model. In the fabricated actuator, each rolled DEA has a diameter of 6 mm and a length of 21 mm. The whole device weighs 1.7 g. In the tested voltage range of 0-1200 V, the actuator exhibits a voltage-controllable angle and torque of up to 2.2° and 11.3 mN∙mm, respectively. The actuator is then implemented into a swimming robot, which shows forward speed of 0.9 mm/s at the applied voltage of 1000 V and the driving frequency of 10 Hz. The results demonstrate the feasibility of using rolled DEAs in underwater robots.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9656233 | PMC |
http://dx.doi.org/10.3390/polym14214549 | DOI Listing |
Sensors (Basel)
January 2025
State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016, China.
As advancements in autonomous underwater vehicle (AUV) technology unfold, the role of underwater wireless sensor networks (UWSNs) is becoming increasingly pivotal. However, the high energy consumption in these networks can significantly reduce their operational lifespan, while latency issues can impair overall network performance. To address these challenges, a novel mixed packet forwarding strategy is developed, which incorporates a wakeup threshold and a dynamically adjusted access probability for the cluster head (CH).
View Article and Find Full Text PDFSci Rep
January 2025
Electrical and Information Engineering College, Jilin Agricultural Science and Technology University, Jilin, 132109, China.
It is challenging to achieve high-speed and accurate multicooperation of turtle-inspired amphibious spherical robots (ASRs) in turbid water and confined spaces when the robots are underwater movement with multiple degrees of freedom (MDOF). This paper innovatively proposes a control strategy for modelling and experimental platforms that can communicate and cooperate between multiple robots. First, a novel underwater kinematic model using the unit quaternion (UQ) algorithm is proposed based on attitude interpolation to realize MDOF movement.
View Article and Find Full Text PDFFront Robot AI
January 2025
AAU Energy, Aalborg University, Esbjerg, Denmark.
Introduction: Subsea applications recently received increasing attention due to the global expansion of offshore energy, seabed infrastructure, and maritime activities; complex inspection, maintenance, and repair tasks in this domain are regularly solved with pilot-controlled, tethered remote-operated vehicles to reduce the use of human divers. However, collecting and precisely labeling submerged data is challenging due to uncontrollable and harsh environmental factors. As an alternative, synthetic environments offer cost-effective, controlled alternatives to real-world operations, with access to detailed ground-truth data.
View Article and Find Full Text PDFSoft Robot
January 2025
Department of Mechanical and Nuclear Engineering, Khalifa University, Abu Dhabi, UAE.
The inherent challenges of robotic underwater exploration, such as hydrodynamic effects, the complexity of dynamic coupling, and the necessity for sensitive interaction with marine life, call for the adoption of soft robotic approaches in marine exploration. To address this, we present a novel prototype, ZodiAq, a soft underwater drone inspired by prokaryotic bacterial flagella. ZodiAq's unique dodecahedral structure, equipped with 12 flagella-like arms, ensures design redundancy and compliance, ideal for navigating complex underwater terrains.
View Article and Find Full Text PDFSoft Robot
January 2025
Department of Mechanical and Nuclear Engineering, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates.
Soft robots and bioinspired systems have revolutionized robot design by incorporating flexibility and deformable materials inspired by nature's ingenious designs. Similar to many robotic applications, sensing and perception are paramount to enable soft robots to adeptly navigate the unpredictable real world, ensuring safe interactions with both humans and the environment. Despite recent progress, soft robot sensorization still faces significant challenges due to the virtual infinite degrees of freedom of the system and the need for efficient computational models capable of estimating valuable information from sensor data.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!