The manuscript aimed to review the types of acrylate polymers used in dentistry, as well as their chemical, physical, mechanical, and biological properties. Regarding their consistency and purpose, dental acrylate polymers are divided into hard (brittle), which includes acrylates for the production of plate denture bases, obturator prostheses, epitheses and maxillofacial prostheses, their repairs and lining, and soft (flexible), which are used for lining denture bases in special indications. Concerning the composition and method of polymerization initiation, polymers for the production of denture bases are divided into four types: heat-, cold-, light-, and microwave-polymerized. CAD/CAM acrylate dentures are made from factory blocks of dental acrylates and show optimal mechanical and physical properties, undoubtedly better monomer polymerization and thus biocompatibility, and stability of the shape and colour of the base and dentures. Regardless of the number of advantages that these polymers have to offer, they also exhibit certain disadvantages. Technological development enables the enhancement of all acrylate properties to respond better to the demands of the profession. Special attention should be paid to improving the biological characteristics of acrylate polymers, due to reported adverse reactions of patients and dental staff to potentially toxic substances released during their preparation and use.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9653800 | PMC |
http://dx.doi.org/10.3390/polym14214511 | DOI Listing |
Langmuir
January 2025
School of Chemistry, Key Centre for Polymers and Colloids, The University of Sydney, Sydney, New South Wales 2006, Australia.
Polymer Janus nanoparticles with one hard cross-linked polystyrene lobe and one soft film-forming poly(methyl methacrylate--butyl acrylate) lobe were synthesized by reversible addition-fragmentation chain transfer (RAFT)-mediated emulsion polymerization. The Janus nanoparticles adsorbed to oil/water and air/water interfaces, where the soft lobes coalesced, forming films of thickness between 25 and 250 nm; droplets of silicone oil could be stably encapsulated in polymer in this way. When prepared by mechanical mixing without additives, capsules of diameter 5-500 μm could be prepared, and with additives and application of heat, capsules of diameter around 5 μm were achieved, even with highly viscous silicone oil (20,000 cSt).
View Article and Find Full Text PDFClin Oral Investig
January 2025
Department of Biology, Science Faculty, Atatürk University, Erzurum, Türkiye.
Introduction: Cymbopogon martini, Syzygium aromaticum, and Cupressus sempervirens are used for antimicrobial purposes in the worldwide. Both their extracts and essential oil contents are rich in active ingredients.
Objective: The aim of this study was to investigate the inhibitory effect of Cymbopogon martini essential oil (CMEO), Syzygium aromaticum essential oil (SAEO) and Cupressus sempervirens essential oil (CSEO) on Candida albicans biofilm formation on heat-polymerized polymethyl methacrylate (PMMA) samples in vitro and in silico.
Sci Rep
January 2025
Department of Occupational Pneumology, Institute of Industrial Ecological Sciences, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahata-nishi-ku, Kitakyushu, Fukuoka, 807-8555, Japan.
Polyacrylic acid (PAA) with different concentrations of cross-linker was instilled into the trachea of rats to examine the effect of PAA crosslink density on lung disorders. Methods: F344 rats were intratracheally exposed to low and high doses of PAA with cross-linker concentrations of 0.1, 1.
View Article and Find Full Text PDFJ Contemp Dent Pract
October 2024
Department of Prosthodontics, Government Dental College, Kozhikode, Kerala, India, Orcid: https://orcid.org/0000-0003-1456-3851.
Aim: The aim of this study was to compare the surface roughness and color stability of polyetheretherketone (PEEK) with those of conventional interim prosthetic materials like polymethylmethacrylate, bis-acrylic composite, and rubberized diurethane dimethacrylate, following immersion in solutions of varying pH value.
Materials And Methods: A total of 320 circular discs with 10 mm diameter and 2 mm height were divided based on the fabrication ( = 80)-group A: polymethylmethacrylate; group B: bis-acrylic composite; group R: rubberized diurethane; and group P: hot-pressed PEEK-and were subjected to baseline measurement of roughness ( = 40) and color ( = 40) using 3D profilometer and UV-Vis spectrophotometer, respectively. Later, 10 samples from each group were immersed in distilled water, black coffee, green tea, and Pepsi, respectively, for 120 days, and measurements of roughness and color were repeated.
Macromol Rapid Commun
January 2025
Department of Materials Science and Engineering, University of Utah, Salt Lake City, Utah, 84112, USA.
Fiber-reinforced composites (FRCs) possess a remarkable strength-to-weight ratio, making them ideal light-weighing alternative materials of metals used in automotive, aerospace, and outdoor equipment applications, but their recycling is challenging. Chemically recyclable thermoset polymers can enable fiber recovery and reuse; however, challenges remain in the separation and purification of depolymerized small molecules for efficient polymer recycling. To this end, a series of liquid resins for chemically recyclable polymer networks is designed based on phthalic anhydride, a widely produced and inexpensive chemical.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!