Plant diseases caused by pathogens lead to economic and agricultural losses, while plant resistance is defined by robustness and timing of defence response. Exposure to microbial-associated molecular patterns or specific chemical compounds can promote plants into a primed state with more robust defence responses. β-aminobutyric acid (BABA) is an endogenous stress metabolite that induces resistance, thereby protecting various plants' diverse stresses by induction of non-canonical activity after binding into aspartyl-tRNA synthetase (AspRS). In this study, by integrating BABA-induced changes in selected metabolites and transcript data, we describe the molecular processes involved in BABA-induced resistance (BABA-IR) in tomatoes. BABA significantly restricted the growth of the pathogens pv. tomato DC3000 and was related to the accumulation of transcripts for pathogenesis-related proteins and jasmonic acid signalling but not salicylic acid signalling in Arabidopsis. The resistance was considerably reduced by applying amino acids L-Asp and L-Gln when L-Gln prevents general amino acid inhibition in plants. Analysis of amino acid changes suggests that BABA-IR inhibition by L-Asp is due to its rapid metabolisation to L-Gln and not its competition with BABA for the aspartyl-tRNA synthetase (AspRS) binding site. Our results showed differences between the effect of BABA on tomatoes and other model plants. They highlighted the importance of comparative studies between plants of agronomic interest subjected to treatment with BABA.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9655027PMC
http://dx.doi.org/10.3390/plants11212908DOI Listing

Publication Analysis

Top Keywords

aspartyl-trna synthetase
8
synthetase asprs
8
acid signalling
8
amino acid
8
resistance
5
acid
5
baba
5
l-aspartate l-glutamine
4
l-glutamine inhibit
4
inhibit beta-aminobutyric
4

Similar Publications

Chloroplastic Aspartyl-tRNA Synthetase Is Required for Chloroplast Development, Photosynthesis and Photorespiratory Metabolism.

Plant Cell Environ

December 2024

Guangdong Provincial Key Laboratory for the Development Biology and Environmental Adaptation of Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, China.

Photorespiration is a complex metabolic process linked to primary plant metabolism and influenced by environmental factors, yet its regulation remains poorly understood. In this study, we identified the asprs3-1 mutant, which displays a photorespiratory phenotype with leaf chlorosis, stunted growth, and diminished photosynthesis under ambient CO, but normal growth under elevated CO conditions. Map-based cloning and genetic complementation identified AspRS3 as the mutant gene, encoding an aspartyl-tRNA synthetase.

View Article and Find Full Text PDF

Assembly of the Human Multi-tRNA Synthetase Complex Through Leucine Zipper Motifs.

J Mol Biol

December 2024

School of Life Science and Biotechnology, KNU Creative BioResearch Group, Kyungpook National University, Daegu 41566, Republic of Korea. Electronic address:

Aminoacyl-tRNA synthetases (ARSs) are responsible for the ligation of amino acids to their cognate tRNAs. In human, nine ARSs form a multi-tRNA synthetase complex (MSC) with three ARS-interacting multifunctional proteins (AIMPs). Among the components of MSC, arginyl-tRNA synthetase 1 (RARS1) and two AIMPs (AIMP1 and AIMP2) have leucine zipper (LZ) motifs, which they utilize for their assembly in an MSC.

View Article and Find Full Text PDF

Background: Non-small cell lung cancer (NSCLC) accounts for about 85% of lung cancers, and is the leading cause of tumor-related death. Lung adenocarcinoma (LUAD) is the most prevalent subtype of NSCLC. Although significant progress of LUAD treatment has been made under multimodal strategies, the prognosis of advanced LUAD is still poor due to recurrence and metastasis.

View Article and Find Full Text PDF

Potato β-aminobutyric acid receptor IBI1 manipulates VOZ1 and VOZ2 transcription factor activity to promote disease resistance.

Plant Physiol

December 2024

National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Huazhong Agricultural University (HZAU), Wuhan 430070, China.

Upon infection with nonpathogenic microorganisms or treatment with natural or synthetic compounds, plants exhibit a more rapid and potent response to both biotic and abiotic stresses. However, the molecular mechanisms behind this phenomenon, known as defense priming, are poorly understood. β-minobutyric acid (BABA) is an endogenous stress metabolite that enhances plant tolerance to various abiotic stresses and primes plant defense responses, providing the ability to resist a variety of pathogens (broad-spectrum resistance).

View Article and Find Full Text PDF

In recent years, the use of immune checkpoint inhibitors (ICIS) has increased and there have been case reports of anti-aminoacyl-tRNA synthetase (anti-ARS) antibody syndrome during ICI treatment. However, these cases are limited, and their clinical characteristics are not fully understood. We report the first case of anti-ARS antibody syndrome with asparaginyl-tRNA synthetase antibody during ICI therapy.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!