Rice bacterial leaf blight caused by pv. (Xoo) is responsible for a significant reduction in rice production. Due to the small impact on the environment, biogenic nanomaterials are regarded as a new type of antibacterial agent. In this research, three colloids of silver nanoparticles (AgNPs) were synthesized with different biological materials such as fruit, leaves, and leaves, and called Al-AgNPs, Sm-AgNPs and Tm-AgNPs, respectively. The appearance of brown colloids and the UV-Visible spectroscopy analysis proved the successful synthesis of the three colloids of AgNPs. Moreover, FTIR and XRD analysis revealed the formation of AgNPs structure. The SEM and TEM analysis indicated that the average diameters of the three synthesized spherical AgNPs were 20.18 nm, 21.00 nm, and 40.08 nm, respectively. The three botanical AgNPs had the strongest bacteriostatic against Xoo strain C2 at 20 μg/mL with the inhibition zone of 16.5 mm, 14.5 mm, and 12.4 mm, while bacterial numbers in a liquid broth (measured by OD) decreased by 72.10%, 68.19%, and 65.60%, respectively. Results showed that the three AgNPs could inhibit biofilm formation and swarming motility of Xoo. The ultrastructural observation showed that Al-AgNPs adhered to the surface of bacteria and broke the bacteria. Overall, the three synthetic AgNPs could be used to inhibit the pathogen Xoo of rice bacterial leaf blight.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9654092 | PMC |
http://dx.doi.org/10.3390/plants11212892 | DOI Listing |
Biophys Rep (N Y)
January 2025
Center for Theoretical Biological Physics, Rice University, Houston, Texas 77005, USA; Department of Chemistry, Rice University, Houston, Texas 77005, USA; Department of Chemical and Biomolecular Engineering, Rice University, Houston, Texas 77005, USA. Electronic address:
All living systems display remarkable spatial and temporal precision, despite operating in intrinsically fluctuating environments. It is even more surprising given that biological phenomena are regulated by multiple chemical reactions that are also random. While the underlying molecular mechanisms of surprisingly high precision in biology remain not well understood, a novel theoretical picture that relies on the coupling of relevant stochastic processes has been recently proposed and applied to explain different phenomena.
View Article and Find Full Text PDFSci Adv
January 2025
State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China.
Insect melanization triggered by the conversion of prophenoloxidase to active phenoloxidase via serine proteases (SPs) is an important immediate immune response. However, how phytoplasmas evade this immune response to promote their propagation in insect vectors remains unknown. Here, we demonstrate that infection of leafhopper vectors with rice orange leaf phytoplasma (ROLP) activates the mild melanization response in hemolymph.
View Article and Find Full Text PDFJ Agric Food Chem
January 2025
National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China.
Sulfonamide derivatives have been widely used for pesticide research in recent years. Herein, 1,3,4-oxadiazole sulfonamide derivatives containing a pyrazole structure were synthesized, and their structure-activity relationship was studied. Bioactivity tests showed the remarkable efficacy of most synthesized compounds.
View Article and Find Full Text PDFPlant Dis
January 2025
LSU AgCenter, Plant Pathology and Crop Physiology, Baton Rouge, Louisiana, United States.
In July 2023, panicle and leaf blight-like symptoms were observed from the rice () variety, PVL03, in research field plots in Louisiana (Rayne, LA 70578, USA; 30.21330⁰ N, 92.37309⁰ W).
View Article and Find Full Text PDFHeliyon
January 2025
Centre for Agriculture and Bioscience International (CABI), New Delhi, 110012, India.
Bacterial leaf blight (BLB) in rice, caused by the pathogen pv. , is a significant agricultural problem managed through chemical control and cultivating rice varieties with inherent resistance to the bacterial pathogen. Research has highlighted the potential of using antagonistic microbes which can suppress the BLB pathogen through the production of secondary metabolites like siderophores, rhamnolipids, and hydroxy-alkylquinolines offering a sustainable alternative for BLB management.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!