The search for soybean genotypes more adapted to abiotic stress conditions is essential to boost the development and yield of the crop in Brazil and worldwide. In this research, we propose a new approach using the concept of distance (or similarity) in a vector space that can quantify changes in the morphological traits of soybean seedlings exposed to stressful environments. Thus, this study was conducted to select soybean genotypes exposed to stressful environments (saline or drought) using similarity based on Manhattan distance and the Technique for Order Preference by Similarity to Ideal Solution (TOPSIS) method. TOPSIS is a multi-criteria decision method for selecting the best alternative using the concept of distance. The use of TOPSIS is essential because the genotypes are not absolutely similar in both treatments. That is, just the distance measure is not enough to select the best genotype simultaneously in the two stress environments. Drought and saline stresses were induced by exposing seeds of 70 soybean genotypes to -0.20 MPa iso-osmotic solutions with polyethylene glycol-PEG 6000 (119.6 g L) or NaCl (2.36 g L) for 14 days at 25 °C. The germination rate, seedling length, and seedling dry matter were measured. We showed here how the genotypic stability of soybean plants could be quantified by TOPSIS when comparing drought and salinity conditions to a non-stressful environment (control) and how this method can be employed under different conditions. Based on the TOPSIS method, we can select the best soybean genotypes for environments with multiple abiotic stresses. Among the 70 tested soybean genotypes, RK 6813 RR, ST 777 IPRO, RK 7214 IPRO, TMG 2165 IPRO, 5G 830 RR, 98R35 IPRO, 98R31 IPRO, RK 8317 IPRO, CG 7464 RR, and LG 60177 IPRO are the 10 most stable genotypes under drought and saline stress conditions. Owing to high stability and gains with selection verified for these genotypes under salinity and drought conditions, they can be used as genitors in breeding programs to obtain offspring with higher resistance to antibiotic stresses.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9655377 | PMC |
http://dx.doi.org/10.3390/plants11212827 | DOI Listing |
Food Sci Nutr
January 2025
Seed and Plant Improvement Institute Agricultural Research, Education and Extension Organization (AREEO) Dezful Iran.
High temperatures can impede the growth and development of soybean plants, resulting in decreased yield and seed quality. Heat-induced damage can be mitigated by adjusting sowing date and selecting genotypes that are suitable for cultivation in hot climates. A 2-year (2017-2018) field experiment was conducted at Safiabad Agricultural and Natural Resources Research and Education Center, employing a split-plot design with three replications.
View Article and Find Full Text PDFTheor Appl Genet
January 2025
Research Center for Life Sciences Computing, Zhejiang Lab, Hangzhou, 310012, China.
In the present study, we identified 22 significant SNPs, eight stable QTLs and 17 potential candidate genes associated with 100-seed weight in soybean. Soybean is an economically important crop that is rich in seed oil and protein. The 100-seed weight (HSW) is a crucial yield contributing trait.
View Article and Find Full Text PDFPLoS One
January 2025
Department of Agricultural Production, College of Agricultural and Environmental Sciences, Makerere University, Kampala, Uganda.
Soybean is a globally important industrial, food, and cash crop. Despite its importance in present and future economies, its production is severely hampered by bruchids (Callosobruchus chinensis), a destructive storage insect pest, causing considerable yield losses. Therefore, the identification of genomic regions and candidate genes associated with bruchid resistance in soybean is crucial as it helps breeders to develop new soybean varieties with improved resistance and quality.
View Article and Find Full Text PDFPlants (Basel)
December 2024
National Key Laboratory of Smart Farm Technology and System, Key Laboratory of Soybean Biology in Chinese Ministry of Education, College of Agriculture, Northeast Agricultural University, Harbin 150030, China.
Seed protein content is a critical trait in soybean breeding, as it provides a primary source of high-quality protein for both human consumption and animal feed. This study aimed to enhance molecular marker-assisted selection for high-protein soybean varieties by developing Kompetitive Allele-Specific Polymerase Chain Reaction (KASP) markers targeted at loci associated with seed protein content. Nineteen markers with high genotyping efficacy were identified through screening.
View Article and Find Full Text PDFLife (Basel)
December 2024
Research Institute of Nyíregyháza, Institutes for Agricultural Research and Educational Farm (IAREF), University of Debrecen, P.O. Box 12, 4400 Nyíregyháza, Hungary.
The -mediated technique is widely employed for soybean transformation, but the efficiency of this method is still relatively modest, in which multiple factors are involved. Numerous chemical and physiological cues from host plants are needed for attraction and subsequent T-DNA integration into the plant genome. Susceptible genotypes may permit this attachment and integration, and the agronomically superior genotypes with susceptibility to would play an important role in increasing transformation efficiency.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!