Modulation of the mTOR Pathway by Curcumin in the Heart of Septic Mice.

Pharmaceutics

Department of Pathology, Faculty of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto 14040-900, São Paulo, Brazil.

Published: October 2022

mTOR is a signaling pathway involved in cell survival, cell stress response, and protein synthesis that may be a key point in sepsis-induced cardiac dysfunction. Curcumin has been reported in vitro as an mTOR inhibitor compound; however, there are no studies demonstrating this effect in experimental sepsis. Thus, this study aimed to evaluate the action of curcumin on the mTOR pathway in the heart of septic mice. Free curcumin (FC) and nanocurcumin (NC) were used, and samples were obtained at 24 and 120 h after sepsis. Histopathological and ultrastructural analysis showed that treatments with FC and NC reduced cardiac lesions caused by sepsis. Our main results demonstrated that curcumin reduced mTORC1 and Raptor mRNA at 24 and 120 h compared with the septic group; in contrast, mTORC2 mRNA increased at 24 h. Additionally, the total mTOR mRNA expression was reduced at 24 h compared with the septic group. Our results indicate that treatment with curcumin and nanocurcumin promoted a cardioprotective response that could be related to the modulation of the mTOR pathway.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9697651PMC
http://dx.doi.org/10.3390/pharmaceutics14112277DOI Listing

Publication Analysis

Top Keywords

mtor pathway
12
modulation mtor
8
heart septic
8
septic mice
8
curcumin nanocurcumin
8
compared septic
8
septic group
8
curcumin
6
mtor
5
pathway
4

Similar Publications

To investigate CHD1L's impacts and molecular processes in hypoxic cutaneous squamous cell carcinoma. Monoclonal proliferation assays and CCK-8 were used to detect the proliferation capacity of A431 cells and Colon16 cells; wound healing experiments and Transwell assays were used to examine the migration and invasion capacity of A431 cells and Colon16 cells; angiogenesis experiments were conducted to assess the influence of A431 cells on angiogenesis; a nude mouse tumor xenograft experiment and HE staining were utilized to evaluate the impact of CHD1L on the progression of cutaneous squamous cell carcinoma; western blot analysis was performed to detect the expression of p-PI3K, p-AKT, and PD-L1 in A431 cells, as well as CD9, TSG101, PD-L1 in exosomes, and CD206, Arginase-1, iNOS, IL-1β, p-AKT, p-mTOR, VEGF, COX-2, MMP2, MMP9, p-ERK1/2 in tumor-associated macrophages. Under hypoxic conditions, CHD1L promoted the proliferation, migration, invasion, and angiogenesis of cutaneous squamous cell carcinoma.

View Article and Find Full Text PDF

Omentin-1 mitigates non-alcoholic fatty liver disease by preserving autophagy through AMPKα/mTOR signaling pathway.

Sci Rep

December 2024

Department of Gastroenterology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Jiangxi, 330006, China.

Adipose tissue-derived adipokines facilitate inter-organ communication between adipose tissue and other organs. Omentin-1, an adipokine, has been implicated in the regulation of glucose and insulin metabolism. However, limited knowledge exists regarding the regulatory impact of endogenous omentin-1 on hepatic steatosis.

View Article and Find Full Text PDF

Background: Muscle atrophy after the rupture of a rotator cuff (RC) tendon is a major factor that increases the risk of secondary complications and re-rupture. Metformin, a type 2 diabetes treatment, can be used to modulate intracellular signaling pathways that promote muscle growth. This study aimed to verify whether systemic metformin administration could prevent supraspinatus (SS) atrophy after RC rupture in a rat model.

View Article and Find Full Text PDF

Self-assembled natural triterpenoids for the delivery of cyclin-dependent kinase 4/6 inhibitors to enhance cancer chemoimmunotherapy.

J Control Release

December 2024

Key Laboratory of Natural Medicine Innovation and Transformation, Henan University, Kaifeng 475000, PR China; State Key Laboratory of Antiviral Drugs, Henan University, Kaifeng 475000, PR China; Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, PR China. Electronic address:

Immunogenic cell death (ICD) has recently emerged as a promising strategy in reinforcing anti-PD-L1 blockade immunotherapy of triple-negative breast cancer (TNBC). The CDK4/6 inhibitor palbociclib (PAL), as a clinical star medicine targeting the cell cycle machinery, is an ideal candidate for fabricating a highly efficient ICD inducer for TNBC chemoimmunotherapy. However, the frequently observed chemoresistance and clinical adverse effects, as well as significant antagonistic effects when co-administered with certain chemotherapeutics, have seriously restricted the efficiency of PAL and the feasibility of combination strategies.

View Article and Find Full Text PDF

LncRNA-THBS4 affects granulosa cell proliferation and apoptosis in diminished ovarian reserve by regulating PI3K/AKT/mTOR signaling pathway.

J Reprod Immunol

December 2024

School of Medical and Life Sciences/Reproductive &Women-Children Hospital, Chengdu University of Traditional Chinese Medicine, No.1166 Liutai Avenue, Wenjiang District, Chengdu, Sichuan Province 611137, China; Chengdu Fifth People's Hospital, Affiliated Fifth People's Hospital of Chengdu University of Traditional Chinese Medicine. Electronic address:

Backgrounds: Recent studies have found Several lncRNAs were proved differential expression in diminished ovarian reserve (DOR) patients, however, the mechanism of DOR caused by lncRNAs is still largely unclear.

Methods: High throughput sequencing was performed in ovarian GCs extracted from women with normal ovarian function and women with DOR. Bioinformation analysis was used to analyze the sequencing data and identify the differential expression of lncRNAs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!