Emerging Artificial Intelligence (AI) Technologies Used in the Development of Solid Dosage Forms.

Pharmaceutics

Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, Austin, TX 78712, USA.

Published: October 2022

Artificial Intelligence (AI)-based formulation development is a promising approach for facilitating the drug product development process. AI is a versatile tool that contains multiple algorithms that can be applied in various circumstances. Solid dosage forms, represented by tablets, capsules, powder, granules, etc., are among the most widely used administration methods. During the product development process, multiple factors including critical material attributes (CMAs) and processing parameters can affect product properties, such as dissolution rates, physical and chemical stabilities, particle size distribution, and the aerosol performance of the dry powder. However, the conventional trial-and-error approach for product development is inefficient, laborious, and time-consuming. AI has been recently recognized as an emerging and cutting-edge tool for pharmaceutical formulation development which has gained much attention. This review provides the following insights: (1) a general introduction of AI in the pharmaceutical sciences and principal guidance from the regulatory agencies, (2) approaches to generating a database for solid dosage formulations, (3) insight on data preparation and processing, (4) a brief introduction to and comparisons of AI algorithms, and (5) information on applications and case studies of AI as applied to solid dosage forms. In addition, the powerful technique known as deep learning-based image analytics will be discussed along with its pharmaceutical applications. By applying emerging AI technology, scientists and researchers can better understand and predict the properties of drug formulations to facilitate more efficient drug product development processes.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9694557PMC
http://dx.doi.org/10.3390/pharmaceutics14112257DOI Listing

Publication Analysis

Top Keywords

solid dosage
16
product development
16
dosage forms
12
artificial intelligence
8
formulation development
8
drug product
8
development process
8
development
7
product
5
emerging artificial
4

Similar Publications

Freeze drying is one of the common methods to extend the long-term stability of biologicals. Biological products in solid form have the advantages of convenient transportation and stable long-term storage. However, long reconstitution time and extensive visible bubbles are frequently generated during the reconstitution process for many freeze-dried protein formulations, which can potentially affect the management efficiency of staff, patient compliance, and product quality.

View Article and Find Full Text PDF

Purpose: BMS-986299 is a first-in-class, NOD-, LRR-, and pyrin-domain containing-3 (NLRP3) inflammasome agonist enhancing adaptive immune and T-cell memory responses.

Materials And Methods: This was a phase-I (NCT03444753) study that assessed the safety and tolerability of intra-tumoral BMS-986299 monotherapy (part 1A) and in combination (part 1B) with nivolumab, and ipilimumab in advanced solid tumors. Reported here are single-center results.

View Article and Find Full Text PDF

Protecting monoclonal antibodies via competitive interfacial adsorption of nonionic surfactants.

J Colloid Interface Sci

December 2024

Biological Physics Laboratory, Department of Physics and Astronomy, University of Manchester, Oxford Road, Schuster Building, Manchester M13 9PL, UK. Electronic address:

Hypothesis: Bioengineered monoclonal antibodies (mAbs) have gained significant recognition as medical therapies. However, during processing, storage and use, mAbs are susceptible to interfacial adsorption and desorption, leading to structural deformation and aggregation, and undermining their bioactivity. To suppress antibody surface adsorption, nonionic surfactants are commonly used in formulation.

View Article and Find Full Text PDF

Exogenous nitrogen supplementation for the bioremediation of petroleum-contaminated soils is a widely adopted and effective environmentally friendly strategy. However, the mechanism by which varying nitrogen dosages affect hydrocarbon degradation pathways remains unclear. This study conducted bioremediation on soil with a total petroleum hydrocarbon (TPH) content of 17,090 mg/kg over 210 days.

View Article and Find Full Text PDF

Developing orally administered pediatric formulations presents significant challenges due to the unique characteristics of pediatric patients. Terbinafine hydrochloride (TER), a powerful antifungal agent, is effective against various fungal infections, including Tinea capitis, which is common in children. However, its low aqueous solubility necessitates innovative pharmaceutical strategies to enhance its effectiveness.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!