Nanocomposites based on 13X zeolite (13XZ), calcium oxide (CaO) and metal zinc particles (Zn) were prepared. The resulting nanocomposites were characterized by different techniques. Then, a comparative study on catalytic and noncatalytic pyrolysis of biomass waste was performed to establish the influence of nanocomposites used as catalysts on the yields and characteristics of liquid and solid products. Residual rapeseed biomass (RRB) was employed for pyrolysis experiments and a fixed bed reactor was used. By introducing CaO and metal zinc particles into 13X zeolite mass, the surface area (S) of nanocomposites was reduced, and this decrease is due to the introduction of nano-calcium carbonate and nano-zinc particles, which occupied an important space into zeolite structure. By adding CaO to 13XZ, the pore structure was changed and there was a decrease in the micropores volume. The analysis of the pore area distribution showed a hierarchical pore structure for nanocomposites. The elements composition showed that the main elements contained in nanocomposites are Si, Al, Ca and Zn, confirming the preservation of the zeolite structure. Using these nanocomposites as catalysts in pyrolysis process, the residual biomass could be valorized, producing bio-oil and biochar for the management and sustainability of this low-value waste.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9657492 | PMC |
http://dx.doi.org/10.3390/nano12213841 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!