In this paper, we report a novel design of bismuth nanoparticle-passivated silicon nanowire (Bi@SiNW) heterojunction composites for high diode performances and improved effective carrier lifetime and absorption properties. High-density vertically aligned SiNWs were fabricated using a simple and cost-effective silver-assisted chemical etching method. Bi nanoparticles (BiNPs) were then anchored in these nanowires by a straightforward thermal evaporation technique. The systematic study of the morphology, elemental composition, structure, and crystallinity provided evidence for the synergistic effect between SiNWs and BiNPs. Bi@SiNWs exhibited an eight-fold enhancement of the first-order Raman scattering compared to bare silicon. Current-voltage characteristics highlighted that bismuth treatment dramatically improved the rectifying behavior and diode parameters for Bi-passivated devices over Bi-free devices. Significantly, Bi wire-filling effectively increased the minority carrier lifetime and consequently reduced the surface recombination velocity, further indicating the benign role of Bi as a surface passivation coating. Furthermore, the near-perfect absorption property of up to 97% was achieved. The findings showed that a judicious amount of Bi coating is required. In this study the reasons behind the superior improvement in Bi@SiNW's overall properties were elucidated thoroughly. Thus, Bi@SiNW heterojunction nanocomposites could be introduced as a promising and versatile candidate for nanoelectronics, photovoltaics and optoelectronics.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9656161PMC
http://dx.doi.org/10.3390/nano12213729DOI Listing

Publication Analysis

Top Keywords

carrier lifetime
12
improved effective
8
effective carrier
8
lifetime absorption
8
bi@sinw heterojunction
8
efficient diode
4
diode performance
4
performance improved
4
absorption bismuth
4
bismuth nanoparticles
4

Similar Publications

In Japan, 5 years have passed since the initiation of precision cancer medicine, and recent data accumulation in familial pancreatic cancer (FPC) and hereditary pancreatic cancer is outstanding. Multigene germline panel tests (MGPTs) have revealed that 7%-18% of patients with pancreatic cancer (PC) harbor pathogenic germline variants (PGVs), almost equal to the levels of breast, ovarian, endometrial, and colorectal cancers, with a higher incidence in FPC (14%-26%). The majority of PGVs seen in PC patients are clinically actionable and associated with homologous recombination (HR) pathways (6%-10%, particularly BRCA1/2 in 5%-6%), and the clinical guidelines recommend or propose genetic testing for all PC patients.

View Article and Find Full Text PDF

Synergetic Interface and Bulk Defects Modification with Identical Organic Molecule for Efficient Inverted Perovskite Solar Cells.

ACS Appl Mater Interfaces

January 2025

Center for Excellence in Nanoscience (CAS), Key Laboratory of Nanosystem and Hierarchical Fabrication (CAS), National Center for Nanoscience and Technology, Beijing 100190, China.

Recent progress in inverted perovskite solar cells (IPSCs) mainly focused on NiO modification and perovskite (PVK) regulation to enhance efficiency and stability. However, most works address only monofunctional modifications, and identical molecules with the ability to simultaneously optimize NiO interface and perovskite bulk phase have been rarely reported. This work proposes a dual modification approach using 4-amino-3,5-dichlorobenzotrifluoride (DCTM) to optimize both NiO upper interfaces and reduction of bulk defects in perovskite.

View Article and Find Full Text PDF

Band Tailoring Enabled Perovskite Devices for X-Ray to Near-Infrared Photodetection.

Adv Sci (Weinh)

January 2025

School of Integrated Circuits and Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing, 100084, China.

Perovskite semiconductors have shown significant promise for photodetection due to their low effective carrier masses and long carrier lifetimes. However, achieving balanced detection across a broad spectrum-from X-rays to infrared-within a single perovskite photodetector presents challenges. These challenges stem from conflicting requirements for different wavelength ranges, such as the narrow bandgap needed for infrared detection and the low dark current necessary for X-ray sensitivity.

View Article and Find Full Text PDF

Understanding the lifetime risk of dementia can inform public health planning and improve patient engagement in prevention. Using data from a community-based, prospective cohort study (n = 15,043; 26.9% Black race, 55.

View Article and Find Full Text PDF

Photoinduced Fröhlich Interaction-Driven Distinct Electron- and Hole-Polaron Behaviors in Hybrid Organic-Inorganic Perovskites by Ultrafast Terahertz Probes.

ACS Nano

January 2025

School of Information Science and Technology and Department of Optical Science and Engineering and Key Laboratory of Micro and Nano Photonic Structures (MOE), Fudan University, Shanghai 200433, China.

The formation of large polarons resulting from the Fröhlich coupling of photogenerated carriers with the polarized crystal lattice is considered crucial in shaping the outstanding optoelectronic properties in hybrid organic-inorganic perovskite crystals. Until now, the initial polaron dynamics after photoexcitation have remained elusive in the hybrid perovskite system. Here, based on the terahertz time-domain spectroscopy and optical-pump terahertz probe, we access the nature of interplay between photoexcited unbound charge carriers and optical phonons in MAPbBr within the initial 5 ps after excitation and have demonstrated the simultaneous existence of both electron- and hole-polarons, together with the photogenerated carrier dynamic process.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!