This work valorizes butiá pomace () using pyrolysis to prepare CO adsorbents. Different fractions of the pomace, like fibers, endocarps, almonds, and deoiled almonds, were characterized and later pyrolyzed at 700 °C. Gas, bio-oil, and biochar fractions were collected and characterized. The results revealed that biochar, bio-oil, and gas yields depended on the type of pomace fraction (fibers, endocarps, almonds, and deoiled almonds). The higher biochar yield was obtained by endocarps (31.9%wt.). Furthermore, the gas fraction generated at 700 °C presented an H content higher than 80%vol regardless of the butiá fraction used as raw material. The biochars presented specific surface areas reaching 220.4 m g. Additionally, the endocarp-derived biochar presented a CO adsorption capacity of 66.43 mg g at 25 °C and 1 bar, showing that this material could be an effective adsorbent to capture this greenhouse gas. Moreover, this capacity was maintained for 5 cycles. Biochars produced from butiá precursors without activation resulted in a higher surface area and better performance than some activated carbons reported in the literature. The results highlighted that pyrolysis could provide a green solution for butiá agro-industrial wastes, generating H and an adsorbent for CO.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9658530 | PMC |
http://dx.doi.org/10.3390/molecules27217515 | DOI Listing |
Polymers (Basel)
January 2025
Laboratory of Physical Chemistry of Materials (LCPM), Campus Fanar, Faculty of Sciences II, Lebanese University, Fanar, Jdeidet P.O. Box 90656, Lebanon.
Increasing the flame retardancy of lignocellulosic materials such as × can effectively enable their wide use. This study examines the fireproofing process of Miscanthus particles using an eco-friendly process by grafting phytic acid and urea in aqueous solution. Miscanthus particles underwent a steam explosion step before being grafted.
View Article and Find Full Text PDFMolecules
January 2025
Centro de Ciências e Tecnologias Nucleares (C2TN), Instituto Superior Técnico, Universidade de Lisboa, E.N. 10 ao km 139.7, 2695-066 Bobadela LRS, Portugal.
The wine industry generates high amounts of waste, posing current environmental and economic sustainability challenges. Grape pomace, mainly composed of seeds, skins, and stalks, contains significant amounts of bioactive compounds and constitutes the main solid residue of this industry. Various strategies are being explored for its valorization, from a circular economy perspective.
View Article and Find Full Text PDFMolecules
January 2025
Institute of Vine and Wine Sciences, ICVV (University of La Rioja, Government of La Rioja and CSIC), Finca La Grajera, 26007 Logroño, Spain.
The recovery of polysaccharides (PS) from red grape marc and white grape pomace by enzymatic degradation of their cell walls is an interesting green extraction technique that preserves the structure and bioactivity of PS. The type and dose of enzyme, and the liquid/solid (L/S) ratio in PS extraction were studied using four commercial enzymes. Four different doses per enzyme were used, with tartaric acid as solvent and L/S ratios of 1.
View Article and Find Full Text PDFFoods
January 2025
Department of Physics, University of Patras, 26504 Patras, Greece.
The fast detection of Extra Virgin Olive Oil (EVOO) adulteration with poorer quality and lower price vegetable oils is important for the protection of consumers and the market of olive oil from fraudulent activities, the latter exhibiting an increasing trend worldwide during the last few years. In this work, two optical spectroscopic techniques, namely, Laser-Induced Breakdown Spectroscopy (LIBS) and UV-Vis-NIR absorption spectroscopy, are employed and are assessed for EVOO adulteration detection, using the same set of olive oil samples. In total, 184 samples were studied, including 40 EVOOs and 144 binary mixtures with pomace, soybean, corn, and sunflower oils, at various concentrations (ranging from 10 to 90% /).
View Article and Find Full Text PDFFoods
January 2025
Laboratory of Food Chemistry and Technology, School of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece.
Virgin avocado oil (VAO), treasured for its nutritional and sensory properties, is susceptible to oxidation. To improve its oxidative stability, the feasibility of enrichment with antioxidants from avocado or olive-processing by-products via ultrasound-assisted maceration was explored. Dried, milled avocado (AL), olive leaves (OL), or olive pomace (OP) were ultrasound-macerated with laboratory-extracted VAO at 5, 10, and 20% levels.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!