AI Article Synopsis

  • Porous silicon-based anode materials are promising for batteries due to their ability to handle volume changes and reduce mechanical stress, enhancing cycling performance.
  • Magnesiothermic reduction is a popular method for creating porous silicon, but using corrosive HF etching poses safety risks and hinders its practical application.
  • A new method that avoids HF etching is introduced, achieving macro-/mesoporous silicon by raising the reduction temperature, which improves electrochemical performance and mechanical stability through enhanced structural integrity.

Article Abstract

Porous silicon-based anode materials have gained much interest because the porous structure can effectively accommodate volume changes and release mechanical stress, leading to improved cycling performance. Magnesiothermic reduction has emerged as an effective way to convert silica into porous silicon with a good electrochemical performance. However, corrosive HF etching is normally a mandatory step to improve the electrochemical performance of the as-synthesized silicon, which significantly increases the safety risk. This has become one of the major issues that impedes practical application of the magnesiothermic reduction synthesis of the porous silicon anode. Here, a facile HF-free method is reported to synthesize macro-/mesoporous silicon with good cyclic and rate performance by simply increasing the reduction temperature from 700 °C to 800 °C and 900 °C. The mechanism for the structure change resulting from the increased temperature is elaborated. A finite element simulation indicated that the 3D continuous structure formed by the magnesiothermic reduction at 800 °C and 900 °C could undertake the mechanical stress effectively and was responsible for an improved cyclic stability compared to the silicon synthesized at 700 °C.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9655285PMC
http://dx.doi.org/10.3390/molecules27217486DOI Listing

Publication Analysis

Top Keywords

magnesiothermic reduction
16
porous silicon
12
synthesis porous
8
mechanical stress
8
silicon good
8
electrochemical performance
8
700 °c
8
800 °c
8
°c 900
8
900 °c
8

Similar Publications

Improving the Electrochemical Properties of SiO Anode for High-Performance Lithium-Ion Batteries by Magnesiothermic Reduction and Prelithiation.

ACS Appl Mater Interfaces

January 2025

Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), and Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin 300072, China.

For lithium-ion batteries, silicon monoxide is a potential anode material, but its application is limited by its relatively large irreversible capacity loss, which leads to its low initial Coulombic efficiency (ICE). In this study, we conduct a two-step reaction for the formation of silicon oxide-based materials, including a magnesiothermic reduction of SiO with Mg, followed by the solid-state lithiation of silicon oxide with LiCO. Our results demonstrate that Mg can reduce SiO to Si and form MgSiO, while LiCO reacts with SiO to form LiSiO.

View Article and Find Full Text PDF

Silicon (Si) is recognized as a promising anode material for lithium-ion batteries (LIBs). However, the significant volume expansion during lithiation poses a make-or-break challenge for the commercial adoption of silicon as an anode. The solutions to mitigate the challenge often depend on processes that can increase costs for the LIB.

View Article and Find Full Text PDF

Our Emerging Investigator Series features exceptional work by early-career nanoscience and nanotechnology researchers. Read Mita Dasog's Emerging Investigator Series article 'Unlocking the secrets of porous silicon formation: insights into magnesiothermic reduction mechanism using powder X-ray diffraction studies' (https://doi.org/10.

View Article and Find Full Text PDF

Pre-lithiation synergized with magnesiothermic reduction to enhance the performance of SiO anode for advanced lithium-ion batteries.

J Colloid Interface Sci

February 2025

Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), and Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin 300072, China. Electronic address:

Due to its high theoretical specific capacity, micron-sized silicon monoxide (SiO) is regarded as one of the most competitive anode materials for lithium-ion batteries with high specific energy density. However, originating from the low initial Coulombic efficiency (ICE) and large volume expansion, its large-scale application is seriously hindered. Herein, an easy-to-implement solid-state pre-lithiation method synergized with the magnesiothermic reduction process was performed to enhance the ICE of SiO and a common bimetallic hydride was used as a prelithiation reagent.

View Article and Find Full Text PDF

Precipitation/dissolution of insulating LiS has long been recognized as the rate-determining step in lithium-sulfur (Li-S) batteries, which dramatically undermines sulfur utilization at elevated charging rates. Herein, we present an orientated LiS deposition strategy to achieve extreme fast charging (XFC, ≤15 min) through synergistic control of porosity, electronic conductivity, and anchoring sites of electrode substrate. Via magnesiothermic reduction of a zeolitic imidazolate framework, a nitrogen-doped and hierarchical porous carbon with highly graphitic phase was developed.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!