The construction of novel fluorescent nanozymes is highly desirable for providing new strategies for nanozyme-based sensing systems. Herein, a novel ratiometric fluorescence sensing platform was constructed based on carbon dots (CDs) as both luminophores and nanozymes, which could realize the sensitive detection of hydrogen peroxide (HO). CDs with peroxidase-mimicking activity were prepared with a one-step hydrothermal method using -histidine as an inexpensive precursor. CDs had bright blue fluorescence. Due to the pseudo-peroxidase activity, CDs catalyzed the oxidation of o-phenylenediamine (OPD) with HO to generate 2,3-diaminophenolazine (DAP). The fluorescence resonance energy transfer (FRET) between CDs and DAP resulted in a decrease in the fluorescence of CDs and an increase in the fluorescence of DAP, leading to a ratiometric fluorescence system. The free radical trapping experiment was used to investigate the reactive oxygen radicals (ROS) in the catalytic process of CD nanozymes. The enzymatic parameters of CD nanozymes, including the Michaelis constant () and the maximum initial reaction velocities (), were investigated. A good affinity for both OPD and HO substrates was proven. Based on the FRET between CDs and OPD, a ratiometric fluorescence analysis of HO was achieved and results ranged from 1 to 20 μM and 20 to 200 μM with a low limit of detection (LOD, 0.42 μM). The detection of HO in milk was also achieved.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9656130 | PMC |
http://dx.doi.org/10.3390/molecules27217379 | DOI Listing |
Anal Chim Acta
February 2025
Food Inspection and Quarantine Technology Center of Shenzhen Customs, Shenzhen Academy of Inspection and Quarantine, Shenzhen, 518045, PR China.
Background: Ochratoxin A (OTA) is toxic secondary metabolites produced by fungi and can pose a serious threat to food safety and human health. Due to the high stability and toxicity, OTA contamination in agricultural products is of great concern. Therefore, the development of a highly sensitive and reliable OTA detection method is crucial to ensure food safety.
View Article and Find Full Text PDFSensors (Basel)
January 2025
Centro de Química Estrutural, Institute of Molecular Sciences, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal.
Healthcare-associated infections (HAI) are a critical public health problem, with 30 to 40% of infections related to the urinary tract system. These urinary tract infections (UTIs) are considered one of the most common microbial infections in hospital settings and everyday community contexts, where approximately 80% are highly correlated with urinary catheter insertion, i.e.
View Article and Find Full Text PDFMolecules
January 2025
College of Chemistry and Chemical Engineering, Central South University, Changsha 410017, China.
Ratiometric lanthanide coordination polymers (Ln-CPs) are advanced materials that combine the unique optical properties of lanthanide ions (e.g., Eu, Tb, Ce) with the structural flexibility and tunability of coordination polymers.
View Article and Find Full Text PDFNanomaterials (Basel)
January 2025
Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany.
Environmental changes, such as applied medication, nutrient depletion, and accumulation of metabolic residues, affect cell culture activity. The combination of these factors reflects on the local temperature distribution and local oxygen concentration towards the cell culture scaffold. However, determining the temporal variation of local temperature, independent of local oxygen concentration changes in biological specimens, remains a significant technological challenge.
View Article and Find Full Text PDFSpectrochim Acta A Mol Biomol Spectrosc
January 2025
Department of Obstetrics, The Second Hospital of Shandong University, Jinan 250033 PR China. Electronic address:
A fluorescent probe (NBC), constructed by benzothiazole-coumarin and naphthalimide derivatives, was developed for the detection of SO derivatives using the FRET (Förster Resonance Energy Transfer) strategy. NBC presented large Stokes shift (180 nm), fast response (2 min), high sensitivity (LOD: 45 nM) and an excellent linear relationship in response to SO derivatives. Moreover, NBC has been successfully applied to detect SO derivatives in food samples and living cells.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!