Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
High mobility group box 1 (HMGB1) is a nuclear protein that can interact with a receptor for advanced glycation end-products (RAGE; a multi-ligand immunoglobulin receptor) and mediates the inflammatory pathways that lead to various pathological conditions, such as cancer, diabetes, neurodegenerative disorders, and cardiovascular diseases. Blocking the HMGB1/RAGE axis could be an effective therapeutic approach to treat these inflammatory conditions, which has been successfully employed by various research groups recently. In this article, we critically review the structural insights and functional mechanism of HMGB1 and RAGE to mediate inflammatory processes. More importantly, current perspectives of recent therapeutic approaches utilized to inhibit the communication between HMGB1 and RAGE using small molecules are also summarized along with their clinical progression to treat various inflammatory disorders. Encouraging results are reported by investigators focusing on HMGB1/RAGE signaling leading to the identification of compounds that could be useful in further clinical studies. We highlight the current gaps in our knowledge and future directions for the therapeutic potential of targeting key molecules in HMGB1/RAGE signaling in the pathophysiology of inflammatory diseases.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9658169 | PMC |
http://dx.doi.org/10.3390/molecules27217311 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!