Ziniolide, xantholide B (11α-dihydroziniolide), and 11β-dihydroziniolide, three sesquiterpene lactones with 12,8-guaianolide skeletons, were identified as volatile metabolites from the roots of L., an invasive plant harvested in Corsica. Essential oil, as well as hydrosol and hexane extracts, showed the presence of guaianolide analogues. The study highlights an analytical strategy involving column chromatography, GC-FID, GC-MS, NMR (1D and 2D), and the hemi-synthesis approach, to identify compounds with incomplete or even missing spectral data from the literature. Among them, we reported the H- and C-NMR data of 11β-dihydroziniolide, which was observed as a natural product for the first time. As secondary metabolites were frequently involved in the dynamic of the dispersion of weed species, the allelopathic effects of root's volatile metabolites were assessed on seed germination and seedling growth (leek and radish). Essential oil, as well as hydrosol- and microwave-assisted extracts inhibited germination and seedling growth; root metabolite phytotoxicity was demonstrated. Nevertheless, the phytotoxicity of root metabolites was demonstrated with a more marked selectivity to the benefit of the monocotyledonous species compared to the dicotyledonous species. Ziniolide derivatives seem to be strongly involved in allelopathic interactions and could be the key to understanding the invasive mechanisms of weed.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9656820 | PMC |
http://dx.doi.org/10.3390/molecules27217297 | DOI Listing |
Environ Monit Assess
January 2025
Institut de Recherche Robert-Sauvé en Santé Et en Sécurité du Travail (IRSST), Montréal, Québec, Canada.
In recyclable waste management facilities, several contaminants, mainly bioaerosols and microorganisms, can be released and cause potential adverse health effects. Given that microbial volatile organic compounds (mVOCs) are metabolites developed by molds and since they can be considered as potential biomarkers of mold exposure, their concentrations in ambient air were monitored at a recyclable waste sorting plant (WSP) and a university campus (UC) serving as control environment for comparison. A recently developed analytical method was used for the detection of 21 selected mVOCs in real conditions.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Child Healthcare, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science and Technology, 100 Hongkong Road, Wuhan, 430016, Hubei, China.
The gut microbiome and its metabolites may be important role in regulating the pathogenesis of obesity. This study aimed to characterize the gut microbiome and short-chain fatty acid (SCFA) metabolome in obese children. This case-control study recruited children aged 7‒14 years and divided them into a normal group (NG) and an obese group (OG) based on their body mass index.
View Article and Find Full Text PDFSci Rep
January 2025
Departamento de Agronomía, Escuela Superior de Ingeniería, Universidad de Almeria, Almeria, España.
The production of medicinal plants under stressful environments offers an alternative to meet the requirements of sustainable agriculture. The action of mycorrhizal fungus; Funneliformis mosseae and zinc in stimulating growth and stress tolerance in medicinal plants is an intriguing area of research. The current study evaluated the combined use of nano-zinc and mycorrhizal fungus on the physiochemical responses of Dracocephalum moldavica under salinity stress.
View Article and Find Full Text PDFNat Prod Bioprospect
January 2025
Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, No 7, Peangfei Road, Dapeng District, Shenzhen, 518120, China.
Angelica L. has attracted global interest for its traditional medicinal uses and commercial values. However, few studies have focused on the metabolomic differences among the Angelica species.
View Article and Find Full Text PDFJ Environ Manage
December 2024
College of Engineering (Key Laboratory for Clean Renewable Energy Utilization Technology, Ministry of Agriculture), China Agricultural University, Beijing 100083, PR China. Electronic address:
Acidogenic fermentation was an effective technology to recover volatile fatty acids (VFAs) ethanol and lactic acid from food wastes (FW) as bioresources. However, the impact of process controls on key functional enzymes and metabolic pathways has been inadequately understood. In this study, the metabolite distribution, key functional enzymes and metabolic pathways were completely elucidated using 16S rRNA gene high-throughput sequencing combined with PICRUSt2.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!