Fluorescence imaging is a powerful technique for continuous observation of dynamic intracellular processes of living cells. Fluorescent probes bearing a fluorescence switching property associated with a specific recognition or reaction of target biomolecule, that is, stimuli-responsibility, are important for fluorescence imaging. Thus, fluorescent probes continue to be developed to support approaches with different design strategies. When compared with simple intensity-changing fluorescent probes, ratiometric fluorescent probes typically offer the advantage of less sensitivity to errors associated with probe concentration, photobleaching, and environmental effects. For intracellular usage, ratiometric fluorescent probes based on small molecules must be loaded into the cells. Thus, probes having intrinsic fluorescence may obscure a change in intracellular signal if the background fluorescence of the remaining extracellular probes is high. To overcome such disadvantages, it is necessary to minimize the extracellular background fluorescence of fluorescent probes. Here, the design strategy of the latent ratiometric fluorescent probe for wash-free ratiometric imaging using a xanthene dye seminapthorhodafluor (SNARF) as the scaffold of fluorophore is discussed.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9658230 | PMC |
http://dx.doi.org/10.3390/molecules27217181 | DOI Listing |
Phytother Res
January 2025
College of Veterinary Medicine, Yangzhou University, Yangzhou, China.
The rising prevalence of multidrug-resistant (MDR) Gram-positive bacteria threatens the effectiveness of current antibiotic therapies. However, the development of new antibiotics has stagnated in recent years, highlighted the critical need for the discovery of innovative antimicrobial agents. This study aims to evaluate the antibacterial activity of naphthoquinones derived from Arnebia euchroma (Royle) Johnst (ADNs) and elucidate their underlying mechanisms.
View Article and Find Full Text PDFFluorescent reporters for glutamate release and postsynaptic Ca signaling are essential tools for quantifying synapse functional heterogeneity across neurons and circuits. However, leveraging these probes for neuroscience requires scalable experimental frameworks. Here, we devised a high-throughput approach to efficiently collect and analyze hundreds of optical recordings of glutaamate release activity at presynaptic boutons in cultured rat hippocampal neurons.
View Article and Find Full Text PDFAnal Chem
January 2025
College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China.
The development of a sensory signal amplification approach is very crucial for rapid and precise detection of aflatoxin B (AFB). However, such approaches remain scarce due to the weak interactions between AFB and the sensing probes. Herein, the first example of a dual-excitation fluorescent platform for antibody-free AFB detection is reported, which is assembled by an ordered π-π stack of cationic perylene derivative (PTHA) and tris(2,2'-bipyridine)ruthenium(II) [Ru(bpy)].
View Article and Find Full Text PDFNat Commun
January 2025
Shenzhen Grubbs Institute and Department of Chemistry, Shenzhen Key Laboratory of Small Molecule Drug Discovery and Synthesis, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, Guangdong, China.
3-Amino boron dipyrromethenes (BODIPYs) are a versatile class of fluorophores widely utilized in live cell imaging, photodynamic therapy, and fluorescent materials science. Despite the growing demand for optically active BODIPYs, the synthesis of chiral 3-amino-BODIPYs, particularly the catalytic asymmetric version, remains a challenge. Herein, we report the synthesis of boron-stereogenic 3-amino-BODIPYs via a palladium-catalyzed desymmetric C-N cross-coupling of prochiral 3,5-dihalogen-BODIPYs.
View Article and Find Full Text PDFLuminescence
January 2025
Pharmaceutical Analytical Chemistry Department, Faculty of Pharmacy, Al-Azhar University, Cairo, Egypt.
In this study, a sensitive and selective spectrofluorimetric method was developed for the determination of the antidiabetic drug nateglinide based on its reaction with the xanthene dye acid red 87 (AR87). A fluorescence quenching process was observed for the AR87 at 545 nm upon the addition of nateglinide, which was exploited for the quantitative analysis. The reaction mechanism was investigated using quantum mechanical calculations suggesting a transfer between the electron-rich AR87 and the electron-deficient nateglinide.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!