Among the many factors causing particle sedimentation, three principal ingredients are heavily involved: magnetic particles, a carrier liquid (base oil), and additives (surfactant). Therefore, many works have been carried out to improve the sedimentation stability of magnetorheological fluids (MRFs) by adopting the three methods. In the particle modification stage, the weight concentration, size distribution, particle shape, coated materials, and combinations of different sizes of the particles have been proposed, while for the modification of the carrier liquid, several works on the density increment, wettability control, and the use of natural oils, lubricant oil, grease, and ethyl- and butyl-acetate oils have been undertaken. Recently, in certain recipes to improve sedimentation stability, some additives such as aluminum stearate were used to increase the redispersibility of the aggregated particles. In addition, several works using more than two recipes modifying both the particles and base oils are being actively carried out to achieve higher sedimentation stability. This review article comprehensively introduces and discuses the recipes to improve sedimentation stability from the aspects of the three ingredients. A few conceptual methodologies to prevent the sedimentation occurring via a bottle's storage on the shelves of the application systems are also presented, since, to the author's knowledge, there has not been a report on this issue. These are challenging works to be explored and developed for successful application systems' MRFs.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9696840 | PMC |
http://dx.doi.org/10.3390/mi13111904 | DOI Listing |
Int J Biol Macromol
January 2025
Department of Food Engineering and Technology, Institute of Biosciences, Humanities and Exact Sciences, São Paulo State University (UNESP), Street Cristóvão Colombo, 2265, São José do Rio Preto 15054-000, Brazil. Electronic address:
In response to the growing need to expand the knowledge base on novel, more sustainable protein sources, this study investigated the effectiveness of cowpea protein concentrate (CPC) as a natural emulsifying agent, examining the relationships between pH (3-11), oil concentration (2-10 %), and emulsion stability. pH and oil concentration significantly impacted droplet size distribution, with uniformity decreasing in the order of pH 9 > pH 11 > pH 7, which was attributed to droplet coalescence and flocculation. As evidenced by circular dichroism, alkalinity induced a slight increase in the beta-sheet content of CPC, while simultaneously reducing the alpha-helix content.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Institute of Functional Textiles and Advanced Materials, College of Textiles & Clothing, Qingdao Key Laboratory of Flame-Retardant Textile Materials, State Key Laboratory of Bio-fibers and Eco-textiles, Qingdao University, Qingdao 266071, China. Electronic address:
Regenerated cellulose fibers are required for widespread antibacterial applications across various fields. N-halamines have been extensively studied and are regarded as a promising candidate for antibacterial purposes. In this work, we focus on investigating the chlorination performance of urea-formaldehyde resin microspheres (UFRs) and using them as antibacterial additives incorporated into the spinning dope to fabricate antibacterial viscose fibers.
View Article and Find Full Text PDFMaterials (Basel)
December 2024
Division of Chemical Engineering and Equipment, Faculty of Chemical Technology, Poznan University of Technology, ul. Berdychowo 4, 60-965 Poznan, Poland.
The paper presents the results of research on the rheological properties and stability of oil-in-water emulsions containing cellulose derivatives: methylcellulose, hydroxyethylcellulose, and hydroxypropylmethylcellulose. The continuous phase of the emulsion was a 70% ethanol (EtOH) solution by volume. The dispersed phase consisted of mineral, linseed, and canola oils (20% by volume).
View Article and Find Full Text PDFSoft Matter
January 2025
Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
The impact of animal-based food production on climate change drives the development of plant-based alternatives. We demonstrate the use of colloidal thermogelation on a real nanoemulsion system to create structured gels that could be of interest for thermo-mechanical processing of next-generation plant-based food applications. We use a commercial pea protein isolate (PPI) without further purification to stabilize a 20 vol% peanut oil-in-water nanoemulsion at pH = 7 by high-pressure homogenization (HPH) and demonstrate the temperature induced gelation behavior of the nanoemulsion as a function of the HPH processing parameters.
View Article and Find Full Text PDFMembranes (Basel)
December 2024
School of Marine Science and Technology, Harbin Institute of Technology at Weihai, Weihai 264209, China.
The issue of environmental pollution caused by wastewater discharge from fruit juice production has attracted increasing attention. However, the cost-effectiveness of conventional treatment technology remains insufficient. In this study, a gravity-driven membrane bioreactor (GDMBR) was developed to treat real fruit juice wastewater from secondary sedimentation at pressures ranging from 0.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!