Prediction Method of Steel Corrosion Rate Based on the Helix Distributed Sensor.

Micromachines (Basel)

School of Materials Science and Engineering, Shijiazhuang Tiedao University, No. 17, Beierhuan East Road, Changan District, Shijiazhuang 050043, China.

Published: October 2022

Corrosion of steel bars is of great significance for safety and service life of reinforced concrete structures. This work develops a prediction method for steel corrosion mass loss rate before the crack of concrete structure based on a spiral distributed fiber optic sensor. Reinforced concrete sample instrumented with a spiral distributed fiber optic sensor were prepared. The mathematic relationship between the corrosion mass loss rate of steel bar and the spiral distributed strain is theoretically derived. Meanwhile, numerical analysis by MATLAB shows that these parameters such as the protective layer thickness, corrosion mass loss rate, bar diameter, corrosion expansion coefficient have a remarkable influence on spiral distributed strain. Additionally, electrical accelerated corrosion experiment was performed on the reinforced concrete specimens. The helix strain along the distributed sensor was used to evaluate the corrosion mass loss of steel bar. Further, the influencing factors on the corrosion sensitivity are illustrated here and the corrosion mass loss rate before concrete crack is also quantified. This research provides insights into the corrosion deteriorate mechanism.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9697408PMC
http://dx.doi.org/10.3390/mi13111868DOI Listing

Publication Analysis

Top Keywords

corrosion mass
20
mass loss
20
loss rate
16
spiral distributed
16
reinforced concrete
12
corrosion
11
prediction method
8
method steel
8
steel corrosion
8
distributed sensor
8

Similar Publications

Since the biological activities and toxicities of 'foreign' and/or excess levels of metal ions are predominantly determined by their precise molecular nature, here we have employed high-resolution H NMR analysis to explore the 'speciation' of paramagnetic Ni(II) ions in human saliva, a potentially rich source of biomolecular Ni(II)-complexants/chelators. These studies are of relevance to the corrosion of nickel-containing metal alloy dental prostheses (NiC-MADPs) in addition to the dietary or adverse toxicological intake of Ni(II) ions by humans. Unstimulated whole-mouth human saliva samples were obtained from n = 12 pre-fasted (≥8 h) healthy participants, and clear whole-mouth salivary supernatants (WMSSs) were obtained from these via centrifugation.

View Article and Find Full Text PDF

Use of corn carbon as an additive to enhance magnesium metal self-corrosion and recover phosphorus from swine wastewater in the form of struvite.

Environ Res

January 2025

School of Chemistry and Environmental Engineering, Hubei Minzu University, 39 College Road, Enshi, 445000, China. Electronic address:

Recovery of phosphate from swine wastewater is significant for alleviating eutrophication in aquatic ecosystems and addressing the increasing scarcity of phosphorus resources. In this study, a method for phosphate recovery from swine wastewater using corn carbon as an additive and non-dynamic magnesium metal self-corrosion was studied. The effects of reaction time, C:Mg mass ratio, stirring rate, and aeration rate on phosphate recovery were discussed, and eight experimental models were explored.

View Article and Find Full Text PDF

Comparative analysis of cavitation erosion behavior in wire-arc directed energy deposition and cast nickel-aluminum bronze alloys.

Ultrason Sonochem

January 2025

Jiangsu Key Laboratory for Advanced Metallic Materials, School of Materials Science and Engineering, Southeast University, Nanjing 211189, China.

In this study, the cavitation erosion (CE) behavior of wire-arc directed energy deposition (DED) nickel-aluminum bronze (NAB) alloys is compared with that of cast alloys, and the synergistic effect between corrosion and CE is investigated. The CE resistance of the wire-arc DED NAB alloy is better than that of the cast alloys. The CE of NAB alloys preferentially occurs at the boundaries of the α-Cu and residual β phases, and in the matrix around the κ phase.

View Article and Find Full Text PDF

Advanced Nodular Thin Dense Chromium Coating: Superior Corrosion Resistance.

ACS Appl Mater Interfaces

January 2025

Department of Materials Science and Engineering, Delft University of Technology, Mekelweg 2, 2628 CD Delft, The Netherlands.

Chromium-based functional coatings (CFCs) are widely recognized for their outstanding wear and corrosion resistance across diverse industrial sectors. However, despite advancements in deposition techniques and microstructural enhancements, many contemporary CFCs remain vulnerable to degradation in highly corrosive environments. For the first time, this research delivers a thorough characterization of the corrosion resistance of advanced CFCs, focusing on the performance of a 5 μm thin dense chromium (TDC) coating.

View Article and Find Full Text PDF

This study investigates the corrosion inhibition effects of eco-friendly conifer cone extract (CCE) on steel rebars embedded in cement mortar exposed to 3.5% NaCl under alternate wet/dry cycles. CCE concentrations of 0, 0.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!