HT-29 Colon Cancer Cell Electromanipulation and Assessment Based on Their Electrical Properties.

Micromachines (Basel)

Department of Electrical Measurements and Materials, Faculty of Electrical Engineering and Information Technology, Gheorghe Asachi Technical University of Iasi, 700050 Iasi, Romania.

Published: October 2022

This study proposes a feasible approach for the rapid, sensitive, and label-free identification of cancerous cells based on dielectrophoretic (DEP) manipulation and electrical characterization. In this method, the concentration of target cells at the level of customized microelectrodes via DEP is first determined, followed by an electrical impedance evaluation. The study demonstrates the capacity of the methodology to electrically differentiate HT-29 cancer cells from healthy blood cells based on their impedance spectra. Within a higher frequency domain, the electrical impedance of trapped cancer cells was significantly lower compared with the normal ones. In order to evaluate the functionality and reproducibility of the proposed method, the influence of the DEP and EIS (electrical impedance spectroscopy) operating voltages on the electrical characterization of trapped HT-29 cells was analyzed.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9698395PMC
http://dx.doi.org/10.3390/mi13111833DOI Listing

Publication Analysis

Top Keywords

electrical impedance
12
cells based
8
electrical characterization
8
cancer cells
8
electrical
6
cells
6
ht-29 colon
4
colon cancer
4
cancer cell
4
cell electromanipulation
4

Similar Publications

This study presents the design of a high-gain 16 × 16-slot antenna array with a low sidelobe level (SLL) using a tapered ridge gap waveguide feeding network for Ka-band applications. The proposed antenna element includes four cavity-backed slot antennas. A tapered feeding network is designed and utilized for unequal feeding of the radiating elements.

View Article and Find Full Text PDF

A ridge-loaded staggered double-vane slow-wave structure is proposed for terahertz radiation sources employing a sheet electron beam. This slow-wave structure has the advantages of enhanced electric field and energy density distribution and improved interaction impedance in the beam-wave interaction region. High-frequency characteristics are investigated for the proposed slow wave structure and compared with those of the staggered double-vane slow wave structure.

View Article and Find Full Text PDF

Advanced control strategy for AC microgrids: a hybrid ANN-based adaptive PI controller with droop control and virtual impedance technique.

Sci Rep

December 2024

Department of Theoretical Electrical Engineering and Diagnostics of Electrical Equipment, Institute of Electrodynamics, National Academy of Sciences of Ukraine, Beresteyskiy, 56, Kyiv-57, Kyiv, 03680, Ukraine.

In this paper, an improved voltage control strategy for microgrids (MG) is proposed, using an artificial neural network (ANN)-based adaptive proportional-integral (PI) controller combined with droop control and virtual impedance techniques (VIT). The control strategy is developed to improve voltage control, power sharing and total harmonic distortion (THD) reduction in the MG systems with renewable and distributed generation (DG) sources. The VIT is used to decouple active and reactive power, reduce negative power interactions between DG's and improve the robustness of the system under varying load and generation conditions.

View Article and Find Full Text PDF

detection suffers from slow analysis time and high costs, along with the need for specificity. While state-of-the-art electrochemical biosensors are cost-efficient and easy to implement, their sensitivity and analysis time still require improvement. In this work, we present a paper-based electrochemical biosensor utilizing magnetic core-shell FeO@CdSe/ZnS quantum dots (MQDs) to achieve fast detection, low cost, and high sensitivity.

View Article and Find Full Text PDF

A Cell-Based Electrochemical Biosensor for the Detection of Infectious Hepatitis A Virus.

Biosensors (Basel)

November 2024

Nano Electrochemistry Laboratory, College of Engineering, University of Georgia, Athens, GA 30602, USA.

Hepatitis A virus (HAV), a major cause of acute liver infections, is transmitted through the fecal-oral route and close contact with infected individuals. Current HAV standardized methods rely on the detection of virus antigen or RNA, which do not differentiate between infectious and non-infectious HAV. The objective of this study was to develop a prototype cell-based electrochemical biosensor for detection of infectious HAV.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!