Electrical Modeling and Characterization of Graphene-Based On-Chip Spiral Inductors.

Micromachines (Basel)

Zhejiang Provincial Key Lab of Large-Scale Integrated Circuit Design, School of Electronics and Information, Hangzhou Dianzi University, Hangzhou 310018, China.

Published: October 2022

This paper investigates the electrical performance of graphene-based on-chip spiral inductors by virtue of a physics-based equivalent circuit model. The skin and proximity effects, as well as the substrate loss effect, are considered and treated appropriately. The graphene resistance and inductance are combined into the circuit model. It is demonstrated that the electrical characteristics of the on-chip square spiral inductor can be improved by replacing copper with graphene. Moreover, graphene exhibits more effectiveness in improving the inductance in tapered inductors than uniform ones.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9696271PMC
http://dx.doi.org/10.3390/mi13111829DOI Listing

Publication Analysis

Top Keywords

graphene-based on-chip
8
on-chip spiral
8
spiral inductors
8
circuit model
8
electrical modeling
4
modeling characterization
4
characterization graphene-based
4
inductors paper
4
paper investigates
4
investigates electrical
4

Similar Publications

The bulk photovoltaic effect (BPVE) and its artificial variant generate photocurrent under zero external bias in non-centrosymmetric systems, particularly in on-chip miniaturized metasurface-based photodetectors. Despite significant advancements, enhancing the efficiency of local photocurrent collection remains a challenge, often impeded by non-uniform flow fields in graphene caused by nanoantenna contacts, which lead to carrier transport losses. In this study, we conducted a comprehensive investigation into the regulation of local photocurrent collection in zero-bias optoelectronic metasurface-based photodetectors and explored the impact of nanoantenna array configurations on photocurrent efficiency.

View Article and Find Full Text PDF

Single-layer MoS/graphene-based stable on-chip Zn-ion microbattery for monolithically integrated electronics.

Sci Bull (Beijing)

November 2024

Institute of Flexible Electronics, Northwestern Polytechnical University, Xi'an 710072, China; Key Laboratory of Flexible Electronics of Zhejiang Province, Ningbo Institute of Northwestern Polytechnical University, Ningbo 315103, China. Electronic address:

Self-powered microelectronics are essential for the sustained and autonomous operations of wireless electronics and microrobots. However, they are challenged by integratable microenergy supplies. Herein, we report a single-layer (SL) MoS/graphene heterostructure for stable Zn-ion microbatteries.

View Article and Find Full Text PDF

We demonstrate an on-chip photodetector by integrating a graphene and topological insulator BiTe heterostructure on a thin-film lithium niobate waveguide. Lithium niobate on insulator (LNOI) waveguides are fabricated by the photolithography-assisted chemical mechanical etching method. The bismuth telluride (BiTe) and graphene heterostructure design provides enhanced photocurrent due to the effective photocarrier generation.

View Article and Find Full Text PDF

Graphene-based Field-Effect Transistors (FETs) integrated with microstrip patch antennas offer a promising approach for terahertz signal radiation. In this study, a dual-stage simulation methodology is employed to comprehensively investigate the device's performance. The initial stage, executed in MATLAB, delves into charge transport dynamics within a FET under asymmetric boundary conditions, employing hydrodynamic equations for electron transport in the graphene channel.

View Article and Find Full Text PDF

The mid-infrared (MIR) region is attracting increasing interest for on-chip synchronous detection and free-space optical (FSO) communications. For such applications, a high-performance electro-optical modulator is a crucial component. In this regard, we propose and investigate a graphene-based electro-absorption modulator (EAM) and microring modulator (MRM) using the suspended germanium waveguide platform.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!