Biocontrol Ability and Action Mechanism of 37 on Soft Rot Control of Postharvest Kiwifruit.

Microorganisms

Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Engineering Laboratory for Kiwifruit Industrial Technology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China.

Published: October 2022

Postharvest soft rot of kiwifruit has resulted in substantial market losses, yet there were few antagonistic yeasts reported to control the disease. This study screened 1113 yeast strains for potential antagonistic yeast to control soft rot of kiwifruit caused by Botryosphaeria dothidea and Diaporthe actinidiae, and strain 37 was selected to evaluate the control efficacy and mechanisms, which was identified as Meyerozyma guilliermondii via molecular biological identification. Our results showed that M. guilliermondii 37 effectively reduced pathogen spore germination rate to 28.52% and decay incidence of inoculated kiwifruit to 42.11% maximumly, whereas cell-free supernatant lacked antifungal activity, implying that M. guilliermondii 37 didn’t produce direct antifungal compounds against the two pathogens. In addition, M. guilliermondii 37 adhered tenaciously to the pathogens’ mycelium and colonized rapidly in kiwifruit flesh. Moreover, yeast strain 37 induced kiwifruit resistance by elevating the defense-related enzyme activity, increasing the antioxidant substances content, and suppressing the cell wall-degrading enzyme activity. Gene expression was consistent with the corresponding enzyme activity. Further postharvest yeast immersion treatment significantly reduced natural decay to 35.69% while maintaining soft-ripe quality. These results indicated that M. guilliermondii 37 might serve as a biocontrol agent against postharvest soft rot in kiwifruit.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9695699PMC
http://dx.doi.org/10.3390/microorganisms10112143DOI Listing

Publication Analysis

Top Keywords

soft rot
16
rot kiwifruit
12
enzyme activity
12
postharvest soft
8
kiwifruit
7
guilliermondii
5
biocontrol ability
4
ability action
4
action mechanism
4
soft
4

Similar Publications

Genome sequence of ZAPR22R, isolated from calla lily in China.

Microbiol Resour Announc

January 2025

Institute of Grassland, Flowers and Ecology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China.

Here, we present the complete genome sequence of strain ZAPR22R, isolated from the petiole and tuber of calla lily (), infected with soft rot. The genome consists of a single chromosome (4,528,722 bp) with a G+C content of 41.1%.

View Article and Find Full Text PDF

A new cultivar 'Hisui no Kaori' opens up a fragrant type of lettuce ( L.).

Breed Sci

September 2024

Graduate School of Sciences and Technology for Innovation, Yamaguchi University, 1677-1 Yoshida, Yamaguchi 753-8515, Japan.

'Hisui no Kaori' is the first lettuce ( L.) cultivar characterized by a sweet fragrance, attributed to 2-acetyl-1-pyrroline with the same compound as in fragrant rice and soybean cultivars, as well as edible leaves and stem. Field cultivation trials established optimal planting distances at 30 cm between seedlings, with a fertilizer requirement of N = 150 kg/ha.

View Article and Find Full Text PDF

is a bacterial phytopathogen that causes soft and black rot and actively spreads worldwide. Our study is the first development of immunoassays for detecting . We immunized rabbits and obtained serum with an extremely high titer (1:10).

View Article and Find Full Text PDF

Bacterial soft rot causes major crop losses annually and can be caused by several species from multiple genera. These bacteria have a broad host range and often infect produce through contact with soil. The main genera causing bacterial soft rot are and , both of which have widespread geographical distribution.

View Article and Find Full Text PDF

The regulator of the canonical Wnt pathway, leucine-rich repeat-containing G protein-coupled receptor 5 (LGR5), is expressed in the stem cell compartment of several tissues and overexpressed in different human carcinomas. The isoform of the stem cell marker LGR5, named LGR5Δ5 and first described by our group, is associated with prognosis and metastasis in oral squamous cell carcinoma (OSCC) and soft tissue sarcoma (STS). In a proof-of-principle analysis, the function of LGR5Δ5 was investigated in HEK293T cells, a model cell line of the Wnt pathway, compared to full-length LGR5 (FL) expression.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!