The cathode microporous layer (MPL), as one of the key components of the proton exchange membrane fuel cell (PEM-FC), requires specialized carbon materials to ensure the two-phase flow and interfacial effects. In this respect, we designed a novel MPL based on highly hydrophobic carbon nanowalls (CNW). Employing plasma-assisted chemical vapor deposition techniques directly on carbon paper, we produced high-quality microporous layers at a competitive yield-to-cost ratio with distinctive MPL properties: high porosity, good stability, considerable durability, high hydrophobicity, and substantial conductivity. The specific morphological and structural properties were determined by scanning electron microscopy, X-ray photoelectron spectroscopy, and Raman spectroscopy. Thermo-gravimetric analysis was employed to study the nanostructures' thermal stability and contact angle measurements were performed on the CNW substrate to study the hydrophobic character. Platinum ink, serving as a fuel cell catalyst, was sprayed directly onto the MPLs and incorporated in the FC assembly by hot-pressing against a polymeric membrane to form the membrane-electrode assembly and gas diffusion layers. Single-fuel-cell testing, at moderate temperature and humidity, revealed improved power performance comparable to industrial quality membrane assemblies (500 mW cm mg of cathodic Pt load at 80 °C and 80% RH), with elevated working potential (0.99 V) and impeccable fuel crossover for a low-cost system.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9698599 | PMC |
http://dx.doi.org/10.3390/membranes12111064 | DOI Listing |
Nanomaterials (Basel)
January 2025
Graduate School of Energy Convergence, Institute of Integrated Technology, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea.
Zeolitic imidazolate framework-8 (ZIF-8) has been extensively studied as a precursor for nitrogen-doped carbon (NC) materials due to its high surface area, tunable porosity, and adjustable nitrogen content. However, the intrinsic microporous structure of the ZIF-8 limits mass transport and accessibility of reactants to active sites, reducing its effectiveness in electrochemical applications. In this study, a soft templating approach using a triblock copolymer was used to prepare mesoporous ZIF-8-derived NC (Meso-ZIF-NC) samples.
View Article and Find Full Text PDFMembranes (Basel)
January 2025
Fort Hare Institute of Technology, University of Fort Hare, Private Bag X1314, Alice 5700, Eastern Cape, South Africa.
Recently, the recovery of metals extracted from the spent membrane electrode assemblies (MEAs) of fuel cells has attracted significant scientific attention due to its detrimental environmental impacts. Two major approaches, i.e.
View Article and Find Full Text PDFMembranes (Basel)
December 2024
Group of Analysis & Processes, Faculty of Sciences, University of Angers, 2 Bd. A. de Lavoisier, 49045 Angers, Cedex 01, France.
The objective of this study is to evaluate the degradation of end-of-life BWRO membranes sourced from a factory in France by analyzing their water permeability, roughness, and chemical composition in order to diagnose the level of degradation incurred during their first life cycle in water softening. Following this, two new applications for the end-of-life BWRO membranes were investigated: (i) as ultrafiltration membranes (UF) for domestic effluent treatment and (ii) as cation exchange membranes (CEM) for use in fungal microbial fuel cells (FMFC). The UF membrane was renovated with an acetic acid treatment and, subsequently, used for domestic effluent filtration.
View Article and Find Full Text PDFMembranes (Basel)
December 2024
Department of Chemical & Biological Engineering, Hanbat National University, Daejeon 34158, Republic of Korea.
This study addresses the critical challenge of carbon corrosion in proton exchange membrane fuel cells (PEMFCs) by developing hybrid supports that combine the high surface area of carbon black (CB) with the superior crystallinity and graphitic structure of carbon nanofibers (CNFs). Two commercially available CB samples were physically activated and composited with two types of CNFs synthesized via chemical vapor deposition using different carbon sources. The structure, morphology, and crystallinity of the resulting CNF-CB hybrid supports were characterized, and the performances of these hybrid supports in mitigating carbon corrosion and enhancing the PEMFC performance was evaluated through full-cell testing in collaboration with a membrane electrode assembly (MEA) manufacturer (VinaTech, Seoul, Republic, of Korea), adhering to industry-standard fabrication and evaluation procedures.
View Article and Find Full Text PDFBioengineering (Basel)
January 2025
Environmental Pollution and Remediation Research Group, Department of Chemical Engineering, Mangosuthu University of Technology, P.O. Box 12363, Jacobs 4062, South Africa.
This study evaluates the potential of biorefinery and dairy wastewater as substrates for electricity generation in double chamber Microbial Fuel Cells (DCMFC), focusing on their microbial taxonomy and electrochemical viability. Taxonomic analysis using 16S/18S rDNA-targeted DGGE and high-throughput sequencing identified Proteobacteria as dominant in biorefinery biomass, followed by Firmicutes and Bacteriodota. In dairy biomass, Lactobacillus (77.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!