Commodity PS is synthesized via free radical polymerization, whereas PS in block copolymers (BCPs) is typically synthesized via living anionic polymerization. The purpose of this work is to investigate how the synthesis method impacts important properties such as water sorption and glass transition temperature (). Water sorption is important because the performance of nanostructured polymer membranes in various applications is known to be affected by environmental conditions such as humidity. is important because it dictates processing conditions, both for commodity PS as well as BCPs such as thermoplastic elastomers. Water sorption in commercial PS was found to be 0.5 mg/g at the highest humidities investigated (about 80%), in agreement with literature. On the other hand, syndiotactic PS synthesized anionically at low temperature absorbed more water, up to 1.5 mg/g, due to higher free volume. The greatest impact on water sorption was due to addition of hydrophilic hydroxyl chain ends to atactic PS, which resulted in water sorption of up to 2.3 mg/g. In addition to measuring water sorption and dry separately, the impact of relative humidity on PS was examined. Combined differential scanning calorimetry and dynamic mechanical analysis show that on going from the dry state to high humidity, the of PS decreases by 5 °C. Moreover, the tensile storage modulus of PS decreases from 1.58 GPa at 0% RH to 0.53 GPa at 40% RH. In addition to the practical relevance of this study, this report fills a gap in experimental literature by using a poor solvent system, PS/water, to examine plasticization in the pure polymer limit.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9692681 | PMC |
http://dx.doi.org/10.3390/membranes12111059 | DOI Listing |
Sci Rep
January 2025
Department of General Dentistry, Medical University of Lodz, 251 Pomorska Str, Lodz, 92-213, Poland.
This study aimed at assessing the mechanical properties and degradation of commercial bioactive materials. The bioactive materials (Activa Bioactive Restorative, Beautifil Flow Plus F00, F03, Predicta Bulk Bioactive) and composite resin Filtek Supreme Flow were submitted to flexural and diametral tensile strength tests (FS, DTS), modulus of elasticity (ME) evaluation, and analysis of aging in 70% ethanol and saliva on their hardness and sorption. The results for DTS ranged from 33.
View Article and Find Full Text PDFInt Dent J
January 2025
Department of Pharmacy Practice, School of Pharmacy, College of Pharmacy, IMU University, Kuala Lumpur, Wilayah Persekutuan, Malaysia.
Introduction: This systematic review with network meta-analysis (NMA) analysed the current evidence on in vitro studies comparing trueness of fit, surface roughness, colour stability, surface wettability, water sorption, water solubility, and microbial adhesion between conventional and digital denture bases.
Methods: From inception until December 2023, a systematic search of published in-vitro studies from Scopus, PubMed, and the Cochrane Central Register of Controlled Studies was conducted. The protocol was registered in PROSPERO (CRD42024531416).
Sci Rep
January 2025
Department of Biological Sciences, Birla Institute of Technology and Sciences, Pilani, 333031, Rajasthan, India.
In present study, 15 morphologically different fungi isolated from rhizopheric soils of an industrial area were screened for their Zn removal efficiency from aqueous solution. Isolate depicting highest potential was molecularly identified as Aspergillus terreus SJP02. Effect of various process parameters viz.
View Article and Find Full Text PDFSci Rep
January 2025
Chemistry Department, Faculty of Science, Tanta University, Tanta, 31527, Egypt.
Three composites based on Poly (meta-aminophenol) (PmAP), (3-aminopropyl) triethoxysilane (APTES) and graphene oxide (GO) were synthesized with initial GO dispersion of 3.3, 6.6, and 9.
View Article and Find Full Text PDFJ Hazard Mater
January 2025
Dept. of Science Education, Ewha Womans University, Seoul 03760, South Korea. Electronic address:
Although sulfur-bearing minerals are valuable resources, they pose significant environmental risks to river ecosystems by releasing hazardous leachate. Accurately tracing these sources is crucial but challenging due to overlapping chemical signatures and pollutant transport dynamics in river systems. This study investigates seasonal and spatial variations in sulfate (SO) and trace element contributions in mining districts of the upper Nakdong River basin, South Korea.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!