Performance of an Innovative Low-Cost Recycled Filling (LCRF) in Anaerobic Treatment of Dairy Effluent-A Pilot-Scale Study.

Materials (Basel)

Department of Water Supply and Sewage Systems, Faculty of Civil Engineering and Environmental Sciences, Bialystok University of Technology, 15-351 Bialystok, Poland.

Published: November 2022

The rapid growth in dairy production leads to increasing outputs of high-load effluent, necessitating new methods of treating such waste. Anaerobic processes have been increasingly popular but are hamstrung by limited nutrient removal efficiency. The aim of the present study was to investigate whether low-cost recycled filling (LCRF) improves the anaerobic treatment of dairy effluent. The addition of LCRF was found to increase both COD removal (86.1 ± 2.6%-92.8 ± 1.6%) and P removal (22.1 ± 3.5% to 36.9 ± 4.6%) from the wastewater. The LCRF ensured near-neutral pH and stabilized the structure of the anaerobic microbe community (including Archaea) across all pollutant loads tested. This translated to efficient biogas production and high methane content in the LCRF reactors, peaking at 0.35 ± 0.01 m/kg COD and 68.2 ± 0.6% (respectively) in the best-performing variant.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9655942PMC
http://dx.doi.org/10.3390/ma15217815DOI Listing

Publication Analysis

Top Keywords

low-cost recycled
8
recycled filling
8
filling lcrf
8
anaerobic treatment
8
treatment dairy
8
lcrf
5
performance innovative
4
innovative low-cost
4
anaerobic
4
lcrf anaerobic
4

Similar Publications

Efficient continuous SF/N separation using low-cost and robust metal-organic frameworks composites.

Nat Commun

January 2025

Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, Zhejiang, China.

Physisorption presents a promising alternative to cryogenic distillation for capturing the most potent greenhouse gas, SF, but existing adsorbents face challenges in meeting diverse chemical and engineering concerns. Herein, with insights into in-pore chemistry and industrial process design, we report a systematic investigation that constructed two low-cost composites pellets (Al(fum)@2%HPC and Al(fum)@5%Kaolin) coupled with an innovative two-stage Vacuum Temperature Swing Adsorption (VTSA) process for the ultra-efficient recovery of low-concentration SF from N. Record-high selectivities (> 2×10) and SF dynamic capacities (~ 2.

View Article and Find Full Text PDF

Room-temperature and recyclable preparation of cellulose nanofibers using deep eutectic solvents for multifunctional sensor applications.

Int J Biol Macromol

January 2025

State Key Lab for Hubei New Textile Materials and Advanced Processing Technology, College of Materials Science & Engineering, College of Textile Science & Engineering, Wuhan Textile University, 430200 Wuhan, China. Electronic address:

Cellulose nanofibers (CNFs) have gained increasing attention due to their robust mechanical properties, favorable biocompatibility, and facile surface modification. However, green and recyclable CNF production remains challenging. Herein, a green, low-cost and room-temperature strategy was developed to exfoliate CNFs using deep eutectic solvents.

View Article and Find Full Text PDF

High-Strength and Rapidly Degradable Nanocomposite Yarns from Recycled Waste Poly(glycolic acid) (PGA).

Polymers (Basel)

January 2025

School of Chemistry and Biological Engineering, University of Science and Technology Beijing, No. 30 Xueyuan Road, Haidian District, Beijing 100083, China.

Poly(glycolic acid) (PGA) is a rapidly degradable polymer mainly used in medical applications, attributed to its relatively high cost. Reducing its price will boost its utilization in a wider range of application fields, such as gas barriers and shale gas extraction. This article presents a strategy that utilizes recycled PGA as a raw material alongside typical carbon nanomaterials, such as graphene oxide nanosheets (GO) and carbon nanotubes (CNTs), to produce low-cost, fully degradable yarns via electrospinning and twisting techniques.

View Article and Find Full Text PDF

Enhancing the Performance of Hole-Conductor-Free Printable Mesoscopic Perovskite Solar Cells through Polyaniline-Mediated Iodine Recycling and Defect Passivation.

Small

January 2025

Michael Grätzel Center for Mesoscopic Solar Cells, Wuhan National Laboratory for Optoelectronics, Key Laboratory of Materials Chemistry for Energy Conversion and Storage of Ministry of Education, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, P. R. China.

Printable mesoscopic perovskite solar cells (p-MPSCs) provide an opportunity for low-cost manufacturing of photovoltaics. However, the performance of p-MPSCs is severely compromised by iodine defects. This study presents a strategy by incorporating polyaniline (PANI) to achieve both iodine recycling and iodine defect passivation to significantly improve the performance of p-MPSCs.

View Article and Find Full Text PDF

"Green chemistry" describes the development of new technologies that reduce or eliminate the need for hazardous compounds or the production of them. In order to accomplish this goal, we have developed a new magnetic recyclable biocatalyst in this study by successfully applying aspartic acid to magnetic nanoparticles. Aspartic acid's molecular makeup made it possible for it to stabilize on magnetic nanoparticles using a straightforward method.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!