A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Improved Osseointegration of Selective Laser Melting Titanium Implants with Unique Dual Micro/Nano-Scale Surface Topography. | LitMetric

Selective laser melting manufacture of patient specific Ti implants is serving as a promising approach for bone tissue engineering. The success of implantation is governed by effective osseointegration, which depends on the surface properties of implants. To improve the bioactivity and osteogenesis, the universal surface treatment for SLM-Ti implants is to remove the primitive roughness and then reengineer new roughness by various methods. In this study, the micro-sized partially melted Ti particles on the SLM-Ti surface were preserved for assembling mesoporous bioactive glass nanospheres to obtain a unique micro/nano- topography through combination of SLM manufacture and sol-gel processes. The results of simulated body fluid immersion test showed that bioactive ions (Ca, Si) can be continuously and stably released from the MBG nanospheres. The osseointegration properties of SLM-Ti samples, examined using pre-osteoblast cells, showed enhanced adhesion and osteogenic differentiation compared with commercial pure titanium commonly used as orthopedic implants. Overall, the developed approach of construction of the dual micro/nano topography generated on the SLM-Ti native surface could be critical to enhance musculoskeletal implant performance.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9659274PMC
http://dx.doi.org/10.3390/ma15217811DOI Listing

Publication Analysis

Top Keywords

selective laser
8
laser melting
8
implants
5
surface
5
improved osseointegration
4
osseointegration selective
4
melting titanium
4
titanium implants
4
implants unique
4
unique dual
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!