In this work, nanoporous antireflective coatings on silicate glass were obtained from silicon dioxide sol compositions by the sol-gel method in the presence of quaternary ammonium salt (tetrabutylammonium bromide) at different annealing temperatures (200-250 °C). Varying the salt concentration from 3 to 5 wt.%, we achieved the transmittance of the coatings of about 97% at 250 °C in comparison with 91% for clean glass in the wavelength range from 400 to 1100 nm. The addition of gold nanoparticles to the composition containing 5 wt.% tetrabutylammonium bromide allowed us to decrease the annealing temperature to 200 °C, preserving the transmittance at the level of 96.5%. For this case, the optimal concentration of gold nanoparticles is determined (2.6 × 10 mol/mL). According to the SEM analysis, the obtained antireflective coatings contain pores with a minimum area size up to 4 nm.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9656952PMC
http://dx.doi.org/10.3390/ma15217658DOI Listing

Publication Analysis

Top Keywords

tetrabutylammonium bromide
12
gold nanoparticles
12
antireflective coatings
8
novel antireflection
4
coatings
4
antireflection coatings
4
coatings low-temperature
4
low-temperature annealing
4
annealing presence
4
presence tetrabutylammonium
4

Similar Publications

Deep eutectic solvent (DES)-based eutectogels show significant promise for flexible sensors due to their high ionic conductivity, non-volatility, biocompatibility, and cost-effectiveness. However, achieving tough and stretchable eutectogels is challenging, as the highly polar DES tends to screen noncovalent bonds, such as hydrogen and ionic bonds, between polymer chains, limiting their mechanical strength. In this work, this issue is addressed by leveraging the limited solubility of zwitterionic polymers in a specific DES to induce phase separation, promoting dipole-dipole interactions between polymer chains.

View Article and Find Full Text PDF

8-Hydroxyquinoline and imidazole, two important N-heteroaromatic systems, have a strong affinity towards various anions their acidic OH or NH protons. Three receptor ligands, 5-(1-benzo[]imidazol-2-yl)quinolin-8-ol (1), 5-(benzo[]thiazol-2-yl)quinolin-8-ol (2), and 4-(1-benzo[]imidazol-2-yl)benzene-1,3-diol (3), were synthesized, and their fluoride (F) ion binding properties were investigated. These ligands could selectively bind F ions, and their respective F complexes, namely, 1-TBAF, 2-TBAF, and 3-TBAF (TBAF = tetrabutylammonium fluoride), were characterized using single crystal X-ray analysis, NMR, UV-vis, Hirshfeld surface (HS) analysis and computational studies.

View Article and Find Full Text PDF

A monocationic dicopper(I,I) nitrite complex [Cu(μ-κ:κ-ON)DPFN][NTf] () (DPFN = 2,7-bis(fluoro-di(2-pyridyl)methyl)-1,8-naphthyridine, NTf = N(SOCF)), was synthesized by treatment of a dicopper acetonitrile complex, [Cu(μ-MeCN)DPFN][NTf] (), with tetrabutylammonium nitrite ([BuN][NO]). DFT calculations indicate that is one of three linkage isomers that are close in energy and presumably accessible in solution. Reaction of the μ-κ:κ-ON complex with -TolSH produces nitrous acid (HONO) and the corresponding dicopper thiolate species via an acid-base exchange reaction.

View Article and Find Full Text PDF

Efficient Targeted Regulation of the Interfaces and Bulk in Inverted Perovskite Solar Cells With a [closo-BH]-based Derivative.

Adv Mater

December 2024

Engineering Research Center of Electronic Information Materials and Devices (Ministry of Education), Guangxi Key Laboratory of Information Materials, College of Materials Science and Engineering, Guilin University of Electronic Technology, Guilin, 541004, P. R. China.

The performance and stability of inverted perovskite solar cells (PSCs) is adversely affected by the recombination loss, ion migration, and residual stress arising from issues within the bulk and at the cathode interface. Using simple post-treatment with a novel solution-processable derivative of the dodecahydro-closo-dodecaborate anion ([closo-BH])-(TBA)[BH(OCHCH)OH] (TBAB)-it is simultaneously address these issues. In inverted PSCs, the cationic and anionic components of TBAB uniquely self-separate by positioning themselves precisely to perform their specific modification functions.

View Article and Find Full Text PDF

The synthesis of polymeric thermoset materials with spatially controlled physical properties using readily available resins is a grand challenge. To address this challenge, we developed a photoinitiated polymerization method that enables the spatial switching of radical and cationic polymerizations by controlling the dosage of monochromatic light. This method, which we call Switching Polymerizations by Light Titration (SPLiT), leverages the use of substoichiometric amounts of a photobuffer in combination with traditional photoacid generators.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!