The mechanical response of materials such as fiber and particle composites, rocks, concrete, and granular materials, can be profoundly influenced by the existence of voids. The aim of the present work is to study the dynamic behavior of hexagonal microstructured composites with voids by using a discrete model and homogenizing materials, such as micropolar and classical Cauchy continua. Three kinds of hexagonal microstructures, named regular, hourglass, and skew, are considered with different length scales. The analysis of free vibration of a panel described as a discrete system, as a classical and as a micropolar continuum, and the comparison of results in terms of natural frequencies and modes show the advantage of the micropolar continuum in describing dynamic characteristics of orthotropic composites (i.e., regular and hourglass microstructures) with respect to the Cauchy continuum, which gives a higher error in frequency evaluations for all three hexagonal microstructured materials. Moreover, the micropolar model also satisfactorily predicts the behavior of skewed microstructured composites. Another advantage shown here by the micropolar continuum is that, like the discrete model, this continuum is able to present the scale effect of microstructures, while maintaining all the advantages of the field description. The effect of void size is also investigated and the results show that the first six frequencies of the current problem decrease by increasing in void size.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9658085 | PMC |
http://dx.doi.org/10.3390/ma15217524 | DOI Listing |
Dalton Trans
January 2025
Department of Physics, RPS Degree College, Balana, Mahendergarh, Haryana 123029, India.
The present work reports a clear and improved hydrothermal methodology for the synthesis of MoSe nanoflowers (MNFs) at 210 °C. To observe the effect of temperature on the fascinating properties, the process temperature was modified by ±10 °C. The as-prepared MNFs were found to consist of 2D nanosheets, which assembled into a 3D flower-like hierarchical morphology van der Waals forces.
View Article and Find Full Text PDFNat Commun
January 2025
School of Material Science and Engineering, Nanjing University of Science and Technology, Nanjing, 210094, People's Republic of China.
Interlayer coupling in 2D heterostructures can result in a reduction of the rotation symmetry and the generation of quantum phenomena. Although these effects have been demonstrated in transition metal dichalcogenides (TMDs) with mismatched interfaces, the role of band hybridization remains unclear. In addition, the creation of flat bands at the valence band maximum (VBM) of TMDs is still an open challenge.
View Article and Find Full Text PDFEnviron Res
January 2025
Department of Materials Science and Engineering, Xi'an University of Technology, Xi'an 710048, PR China; Shaanxi Province Key Laboratory of Corrosion and Protection, Xi'an University of Technology, Xi'an 710048, PR China. Electronic address:
Hexagonal boron nitride (h-BN) exhibits unique application potential in water purification due to its large specific surface area, high porosity, and chemical inertness. Designing adsorbents with highly active adsorption sites is one effective method to improve their adsorption capacities. In this study, porous h-BN aerogels containing multiple defect types (DP-BN) were synthesized by using salt templates.
View Article and Find Full Text PDFAdv Healthc Mater
January 2025
Harvard Medical School, Harvard University, Boston, MA, 02115, USA.
Ultra-broadband photodetectors (UB-PDs) are essential in medical applications, public safety monitoring, and various other fields. However, developing UB-PDs covering multiple bands from ultraviolet to medium infrared remains a challenge due to material limitations. Here, a mixed-dimensional heterojunction composed of 2D WS/monodisperse hexagonal stacking (MHS) 3D PdTe particles on 3D Si is proposed, capable of detecting light from 365 to 9600 nm.
View Article and Find Full Text PDFMolecules
December 2024
Department of Chemistry, Faculty of Natural Sciences, Kazakh National Women's Teacher Training University, Gogol 114/1, Almaty 050000, Kazakhstan.
This article presents the synthesis, electrophysical, and catalytic properties of a LaMnO-LaFeO nanocomposite material. The nanocomposite was synthesized via the sol-gel (Pechini) method. X-ray diffraction (XRD) analysis revealed a polycrystalline, biphasic perovskite structure combining both hexagonal and cubic symmetry.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!