Proprotein convertase subtilisin/kexin 6 (PCSK6) is a secreted serine protease expressed in most major organs, where it cleaves a wide range of growth factors, signaling molecules, peptide hormones, proteolytic enzymes, and adhesion proteins. Studies in -deficient mice have demonstrated the importance of Pcsk6 in embryonic development, body axis specification, ovarian function, and extracellular matrix remodeling in articular cartilage. In the cardiovascular system, PCSK6 acts as a key modulator in heart formation, lipoprotein metabolism, body fluid homeostasis, cardiac repair, and vascular remodeling. To date, dysregulated PCSK6 expression or function has been implicated in major cardiovascular diseases, including atrial septal defects, hypertension, atherosclerosis, myocardial infarction, and cardiac aging. In this review, we describe biochemical characteristics and posttranslational modifications of PCSK6. Moreover, we discuss the role of PCSK6 and related molecular mechanisms in cardiovascular biology and disease.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9656567 | PMC |
http://dx.doi.org/10.3390/ijms232113429 | DOI Listing |
Curr Atheroscler Rep
January 2025
Carbohydrate and Lipid Metabolism Research Unit, Department of Medicine, University of the Witwatersrand, Johannesburg, South Africa.
Purpose Of Review: Homozygous familial hypercholesterolaemia (HoFH) is characterized by marked elevation of low-density lipoprotein cholesterol (LDLC) and premature atherosclerotic cardiovascular disease. This is a review of novel pharmacological therapies to lower LDLC in patients with HoFH.
Recent Findings: Novel therapies can be broadly divided by whether their efficacy is dependent or independent of residual low-density lipoprotein receptor (LDLR) function.
Naunyn Schmiedebergs Arch Pharmacol
January 2025
Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Králové, Charles University, Hradec Králové, Czech Republic.
Familial hypercholesterolemia (FH) is a relatively rare genetic disease associated with high serum cholesterol levels but also with abnormalities in blood coagulation. Novel pharmacotherapeutic approaches in FH including proprotein convertase subtilisin/kexin type 9 antibodies (PCSK9Ab) are very efficient in decreasing cholesterol levels but their impact on coagulation in FH is not yet established. Therefore, we hypothesized that these novel antidyslipidemic drugs can positively impact blood coagulation due to their more potent effect on cholesterol.
View Article and Find Full Text PDFNat Commun
January 2025
Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA.
Genome editing using CRISPR-Cas systems is a promising avenue for the treatment of genetic diseases. However, cellular and humoral immunogenicity of genome editing tools, which originate from bacteria, complicates their clinical use. Here we report reduced immunogenicity (Red)(i)-variants of two clinically relevant nucleases, SaCas9 and AsCas12a.
View Article and Find Full Text PDFSci Rep
January 2025
Cardiovascular Institute, Children's Hospital of Philadelphia, Philadelphia, PA, USA.
Heart failure with preserved ejection fraction (HFpEF) is increasingly common but its pathogenesis is poorly understood. The ability to assess genetic and pharmacologic interventions is hampered by the lack of robust preclinical mouse models of HFpEF. We developed a novel "two-hit" model, which combines obesity and insulin resistance with chronic pressure overload to recapitulate clinical features of HFpEF.
View Article and Find Full Text PDFJ Cell Physiol
January 2025
Division of Vascular Medicine and Pharmacology, Department of Internal Medicine, Erasmus MC, Rotterdam, The Netherlands.
Megalin is a multiple-ligand receptor that contributes to protein reabsorption in the kidney. Recently, megalin was found to act as a novel endocytic receptor for prorenin. Internalization depended on the (pro)renin receptor.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!