The first evidence of native cyclodextrins fusion was registered using fast scanning calorimetry (FSC) with heating rates up to 40,000 K s. The endothermal effects, detected at low heating rates, correspond to the decomposition processes. Upon the increase of the heating rate the onset of these effects shifts to higher temperatures, reaching a limiting value at high heating rates. The limiting temperatures were identified as the melting points of α-, β- and γ-cyclodextrins, as the decomposition processes are suppressed at high heating rates. For γ-cyclodextrin the fusion enthalpy was measured. The activation energies of thermal decomposition of cyclodextrins were determined by dependence of the observed thermal effects on heating rates from 4 K min in conventional differential scanning calorimetry to 40,000 K s in FSC. The lower thermal stability and activation energy of decomposition of β-cyclodextrin than for the other two cyclodextrins were found, which may be explained by preliminary phase transition and chemical reaction without mass loss. The obtained values of fusion parameters of cyclodextrins are needed in theoretical models widely used for prediction of solubility and solution rates and in preparation of cyclodextrin inclusion compounds involving heating.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9655725PMC
http://dx.doi.org/10.3390/ijms232113120DOI Listing

Publication Analysis

Top Keywords

heating rates
20
scanning calorimetry
12
parameters cyclodextrins
8
fast scanning
8
decomposition processes
8
high heating
8
heating
7
rates
6
cyclodextrins
5
determination melting
4

Similar Publications

People with symptomatic lower extremity peripheral artery disease (PAD) suffer from severe leg pain, walking impairment, and reduced quality of life, but few effective treatments are available. Emerging evidence suggests that regular heat therapy (HT) may improve cardiovascular and physical function in patients with PAD. However, the lack of accessible, practical modalities for unsupervised HT, especially for elderly individuals, has hindered clinical implementation.

View Article and Find Full Text PDF

Boron nitride (BN), renowned for its exceptional optoelectrical properties, mechanical robustness, and thermal stability, has emerged as a promising two-dimensional (2D) material. Reinforcing AZ80 magnesium alloy with BN can significantly enhance its mechanical properties. To investigate and predict this enhancement during hot deformation, we introduce two independent modeling approaches a modified Johnson-Cook (J-C) constitutive model and an Artificial Neural Network (ANN).

View Article and Find Full Text PDF

Colloidal Germanium Quantum Dots with Broadly Tunable Size and Light Emission.

J Am Chem Soc

January 2025

McKetta Department of Chemical Engineering and Texas Material Institute, The University of Texas at Austin, Austin, Texas 78712, United States.

Germanium (Ge) colloidal quantum dots (CQDs) were synthesized by thermal decomposition of GeI using capping ligand mixtures of oleylamine (OAm), octadecene (ODE), and trioctylphosphine (TOP). Average diameters could be tuned across a wide range, from 3 to 18 nm, by adjusting reactant concentrations, heating rates, and reaction temperatures. OAm promotes decomposition of GeI to Ge and serves as a weakly bound capping ligand.

View Article and Find Full Text PDF

A portable gas chromatograph-mass spectrometer (GC-MS) is an effective instrument for rapid on-site detection of volatile organic compounds (VOCs). Current instruments typically adsorb samples at ambient temperature, challenging the detection of low-boiling VOCs. In this study, a low-temperature adsorption thermal desorption method is proposed for sample enrichment in a portable GC-MS.

View Article and Find Full Text PDF

Emission rates for volatile organic compounds (VOCs) have been quantified from frying, spice and herb cooking, and cooking a chicken curry, using real-time selected-ion flow-tube mass spectrometry (SIFT-MS) for controlled, laboratory-based experiments in a semi-realistic kitchen. Emissions from 7 different cooking oils were investigated during the frying of wheat flatbread (puri). These emissions were dominated by ethanol, octane, nonane and a variety of aldehydes, including acetaldehyde, heptenal and hexanal, and the average concentration of acetaldehyde (0.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!